Patents Assigned to Micronas GmbH
  • Publication number: 20140347045
    Abstract: A three-dimensional Hall sensor can be used for detecting a spatial magnetic field. A method for measuring a spatial magnetic field can be performed using this Hall sensor. The Hall sensor comprises an electrically conducting base body and at least three electrode pairs, wherein each electrode pair has a first terminal and a second terminal, which are arranged such on the base body, that a current can flow from the first terminal to the second terminal through the base body. At least three first terminals are arranged on a first surface of the base body and at least three second terminals are arranged on the second surface, different from the first surface of the base body, wherein the first and the second surfaces oppose each other.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 27, 2014
    Applicant: Micronas GmbH
    Inventors: Oliver Paul, Patrick Ruther, Aftab Taimur
  • Publication number: 20140346579
    Abstract: A magnetic field sensor device having a semiconductor body, whereby the semiconductor body has a top side and a bottom side, and whereby the semiconductor body has a substrate layer and a passivation layer formed above the substrate on the top side of the semiconductor body, and one or more integrated electronic components are formed in the substrate layer of the semiconductor body, and a Hall plate is provided on the top side of the semiconductor body above the passivation layer, and the Hall plate is formed of a graphene compound.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 27, 2014
    Applicant: Micronas GmbH
    Inventor: Joerg FRANKE
  • Publication number: 20140333299
    Abstract: A measuring system, having a magnetic device for generating a magnetic field and having a magnetic field sensor with a sensor surface for detecting a flux density of the magnetic field penetrating the sensor surface at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device can have at least one permanent magnet and a flux concentrator made of a ferromagnetic material. The permanent magnet has at least two pole surfaces and an outer surface. The flux concentrator can have a smaller dimensions than the outer surface of the permanent magnet. The flux concentrator can be positioned within the outer surface of the permanent magnet and the flux concentrator and the permanent magnet can have a magnetic force closure.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Micronas GmbH
    Inventors: Klaus HEBERLE, Joerg FRANKE, Oliver BREITWIESER, Timo KAUFMANN
  • Publication number: 20140333298
    Abstract: A measuring system having a magnetic device for generating a magnetic field and having a magnetic field sensor for detecting a flux density of the magnetic field at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device has at least two main poles for generating a main magnetic field and at least two secondary poles for generating a secondary magnetic field. The magnetic field in the magnetic field sensor is formed by superposition of the main magnetic field and the secondary magnetic field. The magnetic field sensor is designed to measure the flux density of the superposition in the first spatial direction, and, in the magnetic field sensor, the secondary magnetic field compensates at least partially the main magnetic field in the first spatial direction.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Micronas GmbH
    Inventors: Klaus HEBERLE, Joerg FRANKE, Oliver BREITWIESER, Timo KAUFMANN
  • Patent number: 8884611
    Abstract: An angle sensor for determining an angle between a sensor system and a magnetic field has a magnet which generates the magnetic field and is adjustable in different rotational positions relative to the sensor system with regard to a rotation axis. The sensor system has a first magnetic field sensor for detecting a first magnetic field component oriented transversely to the rotation axis and a second magnetic field sensor for detecting a second magnetic field component, which is situated transversely to a plane extending from the rotation axis and the first magnetic field component. A third magnetic field sensor of the sensor system detects a third magnetic field component, which is oriented in the direction of the rotation axis. The sensor system is positioned relative to the magnet in such a way that the third magnetic field component is largely independent of the rotational position.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: November 11, 2014
    Assignee: Micronas GmbH
    Inventor: Norbert Hunger
  • Patent number: 8878524
    Abstract: An integrated magnetic field measuring device is provided that includes a semiconductor body arranged on a metal substrate and having a first surface, and a plurality of metal surfaces formed on the surface, a first magnetic field sensor, formed in the semiconductor body and having a first sensor signal, and second magnetic field sensor having a second sensor signal, and a current-carrying first conductor. A third magnetic field sensor with a third sensor signal is formed in the semiconductor body. The first magnetic field sensor, the second magnetic field sensor, and the third magnetic field sensor have a substantially identical orientation to Earth's magnetic field and a different distance to the first conductor and the magnetic field of the first conductor simultaneously penetrates the first magnetic field sensor, the second magnetic field sensor, and the third magnetic field sensor.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: November 4, 2014
    Assignee: Micronas GmbH
    Inventor: Klaus Heberle
  • Patent number: 8878529
    Abstract: A method for monitoring the function of a sensor module including sensor which generates a measurement signal for a physical quantity to be determined and applies the measurement signal to an output terminal in an unchanged form or in processed form. In addition, a test signal is generated whose spectrum lies outside the spectrum of the measurement signal. The test signal is supplied at a place in the sensor from which it reaches the output terminal in unchanged form or in processed form only in the case of a functional sensor. An output signal present at the output terminal is compared with the test signal and a diagnosis signal is generated, which indicates whether the test signal is present at the output terminal. The test signal is filtered out of the output signal and the remaining signal is applied as the measurement signal at an output of the sensor module.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Micronas GmbH
    Inventors: Dieter Baecher, David Muthers, Joerg Franke
  • Publication number: 20140320325
    Abstract: A continuous-time delta sigma modulator, having an integrator and a comparator clocked with a clock frequency that are connected in a feedback loop, having a voltage source that is connected to the comparator for applying a threshold voltage to the comparator, in which an integration time constant of the integrator has a first resistor and a first capacitor, in which the voltage source has a second resistor and a second capacitor for setting the threshold voltage, in which the first resistor and the second resistor are part of a resistor pairing structure, and in which the first capacitor and the second capacitor are part of a capacitor pairing structure.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: Micronas GmbH
    Inventor: David MUTHERS
  • Patent number: 8866426
    Abstract: An integrated circuit for controlling an electric motor, which has a primary component with a coil and a permanently magnetic secondary component cooperatively connected via an air gap to the primary component, has a semiconductor substrate in which are integrated a microcontroller and/or a pre-amplifier for controlling the coil of the electric motor. For detecting the position of the permanently magnetic secondary component, at least two magnetic field sensors with their measurement axes aligned crosswise relative to each other are integrated in the semiconductor substrate.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: October 21, 2014
    Assignee: Micronas GmbH
    Inventors: Jörg Franke, Klaus Heberle
  • Patent number: 8841906
    Abstract: A current sensor having a magnetic field sensor, and a variable current source connected to the magnetic field sensor, and a first differential amplifier, connected to the magnetic field sensor, for amplifying a first sensor voltage. A second differential amplifier is provided and the second differential amplifier is connected to the first differential amplifier and to the current source. In the case of the first sensor voltage, a first operating current is present at the magnetic field sensor and in the case of a second sensor voltage, a second operating current is present, whereby the second Hall voltage is smaller than the first sensor voltage and the second operating current is greater than the first operating current.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 23, 2014
    Assignee: Micronas GmbH
    Inventors: Klaus Heberle, Joerg Franke
  • Patent number: 8836062
    Abstract: An integrated passive component having a semiconductor body, arranged on a metal substrate and having a first surface, and a plurality of metal surfaces formed on the surface, and an integrated circuit formed on the surface of the semiconductor body, whereby the integrated circuit is connected by traces to the metal surfaces, and having a dielectric passivation layer formed on the surface, and the metal surfaces are connected to pins by bonding wires, and a first coil former, formed above the dielectric layer, with a winding, whereby the winding has a first connector and a second connector, and whereby the winding is formed as a wire or litz wire and the first connector of the winding is connected to a first metal surface and the second connector to a second metal surface.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Micronas GmbH
    Inventor: Joerg Franke
  • Patent number: 8836063
    Abstract: An integrated passive component having a semiconductor body, arranged on a metal substrate and having a first surface, and a plurality of metal surfaces formed on the surface, a passivation layer formed on the surface, an integrated circuit formed near the surface of the semiconductor body, whereby the integrated circuit is connected to metal surfaces via traces formed below the passivation layer, a part of the metal surfaces is connected to pins via bonding wires, and a first coil formed above the passivation layer, whereby the first coil with a plurality of turns has a longitudinal axis formed substantially parallel to the surface of the semiconductor body, and in a lower part of the first coil, said part which is formed substantially parallel to the longitudinal axis of the coil on the surface of the semiconductor body, parts of a plurality of turns are formed as sections of traces.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: September 16, 2014
    Assignee: Micronas GmbH
    Inventor: Joerg Franke
  • Patent number: 8822253
    Abstract: A semiconductor housing is provided that includes a metal support and a semiconductor body, a bottom side thereof being connected to the metal support. The semiconductor body has metal surfaces that are connected to pins by bond wires and a plastic compound, which completely surrounds the bond wires and partially surrounds the semiconductor body. The plastic compound has an opening on the top side of the semiconductor body, and a barrier is formed on the top side of the semiconductor body. The barrier has a top area and a base area spaced from the edges of the semiconductor body and an internal clearance of the barrier determines a size of the opening. Whereby, a portion of the plastic compound has a height greater than the barrier, and a fixing layer is formed between the base area of the barrier and the top side of the semiconductor body.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 2, 2014
    Assignee: Micronas GmbH
    Inventors: Tobias Kolleth, Pascal Stumpf, Christian Joos
  • Publication number: 20140205927
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: Micronas GmbH
    Inventors: Mirko LEHMANN, Claas MUELLER, Holger REINECKE, Mirko FRANK, Gilbert ERDLER
  • Publication number: 20140197822
    Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor and the second magnetic field sensor are connected. The evaluation circuit generates a first signal and a second measurement signal. The encoder generates a second magnetic field change with a second periodicity. The evaluation circuit generates a second signal with the second periodicity from the first measurement signal of the first magnetic field sensor and the second measurement signal of the second magnetic field sensor according to an absolute value function.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Micronas GmbH
    Inventors: Joachim RITTER, Joerg FRANKE
  • Publication number: 20140197821
    Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor, the second magnetic field sensor, and the third magnetic field sensor are connected. The evaluation circuit is configured to determine the position of the encoder based on a first measurement signal of the first magnetic field sensor and a second measurement signal of the second magnetic field sensor and a third measurement signal of the third magnetic field sensor.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Micronas GmbH
    Inventors: Joachim RITTER, Joerg FRANKE
  • Publication number: 20140197820
    Abstract: A measuring system having a first magnetic field sensor, an encoder, and an evaluation circuit. The first magnetic field sensor and the second magnetic field sensor and the third magnetic field sensor are connected to the encoder. The evaluation circuit has a logic, which is set up to determine the position of the encoder based on a first measurement signal of a first magnetic field sensor and a second measurement signal of a second magnetic field sensor and a third measurement signal of a third magnetic field sensor.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Micronas GmbH
    Inventors: Joachim RITTER, Joerg FRANKE
  • Publication number: 20140191749
    Abstract: A measuring system is provided that includes a magnetic field sensor array, an evaluation circuit for evaluating measurement signals of the magnetic field sensor array, and a rotatable encoder that has a mass element to change a magnetic field vector in the magnetic field sensor array. The encoder has a spring element in which the mass element is attached to the spring element. The encoder has a linear guide, and the mass element is guided in a radial direction in the linear guide such that during a rotation of the encoder the mass element can be moved by centrifugal force and the centrifugal force works against the spring force of the spring element. The magnetic field sensor array is arranged toward the encoder to measure a change, caused by the movement of the mass element, in the magnetic field vector.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Applicant: Micronas GmbH
    Inventor: Yan BONDAR
  • Patent number: 8759981
    Abstract: A multilayer system includes first and second functional layers, for example, semiconductor layers. A third or intermediate layer is disposed between the first and second functional layers and adheres relatively well to the first and second layers yet has relatively little or no detrimental effect on the functionality of the first and second layers. The third layer is applied to the first layer. Anchoring elements are provided which are partly embedded in the third layer, and the second layer is secured to the third layer by the anchoring elements. This structure yields good adhesion between the three layers, because the third layer adheres relatively well to the first layer and the third layer and the second layer are mechanically bonded together relatively strongly by the anchoring elements.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: June 24, 2014
    Assignee: Micronas GmbH
    Inventors: Heinz Peter Frerichs, Herbert Verhoeven
  • Publication number: 20140159178
    Abstract: A magnetic field sensor having a support with a top side and a bottom side, whereby a Hall plate is provided on the top side of the support and the Hall plate comprises a carbon-containing layer.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Applicant: Micronas GMBH
    Inventor: Joerg FRANKE