Abstract: The coating film includes a laminated structure including at least one first layer and at least one second layer alternately disposed. The or each first layer has an average thickness of 0.5 to 100.0 nm and has an average composition: (AlxTi1-x-y-zMy)BzN, where M is at least one element selected from the group consisting of Groups 4, 5, and 6 elements, and lanthanide elements in the periodic table, 0.100?x?0.640, 0.001?y?0.100, and 0.060?z?0.400. The or each second layer has an average thickness of 0.5 to 100.0 nm and has an average composition: (AlpCr1-p-q-rM?q)BrN, where M? is at least one element selected from the group consisting of Groups 4, 5, and 6 elements, and lanthanide elements in the periodic table, 0.650?p?0.900, 0.000?q?0.100, and 0.000?r?0.050.
Abstract: A pure copper sheet of the present invention has a composition including 99.96 mass % or more of Cu, 0.01 mass ppm or more and 3.00 mass ppm or less of P, 10.0 mass ppm or less of a total content of Pb, Se, and Te, 3.0 mass ppm or more of a total content of Ag and Fe, and inevitable impurities as a balance, in which an average crystal grain size of crystal grains on a rolled surface is 10 ?m or more, an aspect ratio of the crystal grain on the rolled surface is set to 2.0 or less, and a length percentage of the small tilt grain boundary and the subgrain boundary with respect to all grain boundaries is set to 80% or less in terms of partition fraction.
Abstract: This dithiapolyether diol has a halogen content of less than 10 ppm and a purity of 80% or more and is represented by the following general formula (1) or (2).
Abstract: A polyimide resin composition includes a polyimide resin and a filler dispersed in the polyimide resin, in which the polyimide resin has a dicarboxylic acid group or an acid anhydride group of the dicarboxylic acid group at both ends, and the filler includes at least one inorganic compound selected from the group consisting of aluminum oxide, aluminum hydroxide, magnesium oxide, and magnesium hydroxide on a surface thereof.
Abstract: To improve performance. A negative electrode material is a negative electrode material for a battery, and includes carbon, tungsten trioxide, and silicon particles (33) including silicon, and in the silicon particles (33), a ratio of the amount of Si in Si2p derived from elemental silicon to the amount of Si in Si2p derived from SiO2 in a surface layer is 3 or more, on an atomic concentration basis, as measured by X-ray photoelectron spectroscopy.
Type:
Application
Filed:
March 18, 2022
Publication date:
April 4, 2024
Applicant:
MITSUBISHI MATERIALS CORPORATION
Inventors:
Yoshinobu Nakada, Naoki Rikita, Jie Tang, Kun Zhang
Abstract: A cutting insert has a multi-stage columnar shape with an insert central axis as a center, the cutting insert including: a head portion having a circular cutting edge with the insert central axis as a center, a shaft portion disposed on a lower side of the head portion in an insert axial direction along the insert central axis and having a smaller outer diameter dimension than the head portion; a step portion configured to connect the head portion and the shaft portion; and an index portion disposed over a part of the step portion and a part of the head portion and recessed inward in an insert radial direction from an outer peripheral surface of each of the step portion and the head portion, in which a plurality of the index portions are arranged in an insert circumferential direction, and each of the index portions has a planar alignment surface.
Abstract: A cBN sintered compact includes a binder phase that contains a Ti—Al alloy containing at least one of the Si, Mg, and Zn elements, Ti2CN, TiB2, AlN, and Al2O3; the ratio ITi2CN/ITiAl is 2.0 or more and 30.0 or less, wherein ITi2CN represents the intensity of the Ti2CN peak appearing at 2? from 41.9° to 42.2° and ITiAl represents the intensity of the Ti—Al alloy peak appearing at 2? from 39.0° to 39.3° in XRD; and, in the mapped image of each element of Ti, Al, Si, Mg, and Zn by Auger electron spectroscopy, the ratio STiAlM/STiAl, is 0.05 or more and 0.98 or less wherein STiAlM represents the average area of the portions wherein Ti, Al and at least one selected from the group consisting of Si, Mg, and Zn overlap and STiAl represents the average area of the portions where Ti and Al overlap.
Abstract: This flat conductive plate provided with an insulating film includes a flat conductive plate which is a punched product, and an insulating film which coats at least a part of the flat conductive plate, the insulating film is an electrodeposited film, the insulating film includes a polyamide-imide resin and a fluorine-based resin, an amount of the fluorine-based resin with respect to a total amount of the polyamide-imide resin and the fluorine-based resin is in a range of 72% by mass or more and 95% by mass or less, a relative permittivity at 25° C. is in a range of 2.2 or more and 2.8 or less, and an average film thickness is in a range of 5 ?m or more and 100 ?m or less.
Abstract: A method of producing a copper/ceramic bonded body, the copper member having a composition having a Cu purity of 99.96 mass % or more, a balance of inevitable impurities, a P content of 2 mass ppm or less, and a total content of Pb, Se and Te of 10 mass ppm or less, the method includes bonding the laminated copper member and the ceramic member by pressing and heating, wherein an average crystal grain size of the copper member before bonding is 10 ?m or more, an aspect ratio is 2 or less, and a pressing load is 0.05 MPa or more and 1.5 MPa or less, a heating temperature is 800° C. or higher and 850° C. or lower, and a holding time at the heating temperature is 10 minutes or longer and 90 minutes or shorter.
Abstract: Free-cutting copper alloy comprises Cu: more than 59.7% but less than 64.7%, Si: more than 0.60% but less than 1.30%, Pb: more than 0.001% but less than 0.20%, Bi: more than 0.001% but less than 0.10 mass %, and P: more than 0.001% but less than 0.15%, with remainder being Zn and unavoidable impurities, wherein total amount of Fe, Mn, Co, and Cr is less than 0.45%, the total amount of Sn and Al is less than 0.45%, 56.7?Cu?4.7×Si+0.5×Pb+0.5×Bi?0.5×P?59.7 and 0.003?Pb+Bi<0.25 are satisfied, 0.02?Bi/(Pb+Bi)?0.98 is satisfied if 0.003?Pb+Bi<0.08, 0.01?Bi/(Pb+Bi)?0.40 or 0.85?Bi/(Pb+Bi)?0.98 is satisfied if 0.08?Pb+Bi<0.13.
Abstract: A Li recovery method includes: an acid leaching step of adding an acid to a battery slag to produce a leachate; a first addition step of adding a Ca content to the leachate to produce a first processed product; a post-first-addition filtration step of filtering the first processed product to be separated into a first processing filtrate and a first processing residue; a second addition step of adding sodium carbonate to the first processing filtrate to produce a second processed product; a post-second-addition filtration step of filtering the second processed product to be separated into a second processing filtrate and a second processing residue; heating the second processing filtrate; blowing carbon dioxide into the heated second processing filtrate to produce a third processed product; and a post-carbonation filtration step of filtering the third processed product to be separated into a third processing filtrate and a third processing residue.
Abstract: A turning tool includes a tool body extending along a tool axis and having a base on a tip of the tool body, a cutting insert detachably attached to the base, and a measurement device attached to the tool body. The measurement device has a first distance sensor which measures a distance to an object located radially outward of the tool axis.
Abstract: Tungsten trioxide is appropriately disposed on the surface of carbon. A negative-electrode material is a negative-electrode material for a battery and contains amorphous carbon and tungsten trioxide provided on the surface of the amorphous carbon.
Abstract: There is provided a method for producing a carbon material, including a carbon generation step of causing carbon dioxide to react with a reducing agent to generate carbon, in which, as the reducing agent, an oxygen-deficient iron oxide represented by Fe3O4-? (where ? is 1 or more and less than 4), which is obtained by reducing magnetite while maintaining a crystal structure, or an oxygen-completely deficient iron (?=4) which is obtained by completely reducing magnetite is used.
Abstract: A method of recovering cobalt and nickel includes the steps of: adding alkaline to an acidic solution containing aluminum together with cobalt and nickel, adjusting pH of the acidic solution to 5 to 7, and converting the cobalt, the nickel and the aluminum into hydroxides thereof; recovering the hydroxides by solid-liquid separation, mixing the recovered hydroxides with an alkaline solution, and leaching aluminum contained in the hydroxides under a liquid condition of pH 8 or more; and recovering a cobalt hydroxide and a nickel hydroxide that aluminum is separated therefrom by solid-separation on a leachate.
Abstract: A copper alloy plate containing in a center part of a plate thickness direction more than 2.0% (% by mass) and 32.5% or less of Zn; 0.1% or more and 0.9% or less of Sn; 0.05% or more and less than 1.0% of Ni; 0.001% or more and less than 0.1% of Fe, and 0.005% or more and 0.1% or less of P; and the balance Cu, including a surface layer part in which a surface Zn concentration in a surface is 60% or less of a center Zn concentration in the center part, having a depth from the surface to where Zn concentration is 90% of the center Zn concentration; and in the surface layer, the Zn concentration increases from the surface toward the center part in the plate thickness direction at a concentration gradient of 10% by mass/?m or more and 1000% by mass/?m or less.
Abstract: There is provided a method for recovering lead from copper smelting dust according to the present invention includes an alkali leaching step of leaching lead contained in copper smelting dust with an alkali solution, a step of performing a solid liquid separation on a post-leaching solution and a leaching residue after the alkali leaching step, a neutralization step of adding an acid to the separated post-leaching solution to precipitate a lead, and a step of recovering a precipitate containing the lead by performing a solid liquid separation.
Type:
Application
Filed:
April 9, 2021
Publication date:
March 7, 2024
Applicant:
MITSUBISHI MATERIALS CORPORATION
Inventors:
Shu Muraoka, Fumito Tanaka, Tomoya Morimoto
Abstract: Providing a copper alloy plate, in which center Mg concentration at a center part in a plate thickness direction 0.1 mass % or more and less than 0.3 mass %, center P concentration is 0.001 mass % or more and 0.2 mass % or less, and the balance is composed of Cu and inevitable impurities; in which surface Mg concentration at a surface is 70% or less of the center Mg concentration; in which a surface layer part defined by a prescribed thickness from the surface has a concentration gradient of Mg of 0.05 mass %/?m or more and 5 mass %/?m or less increasing from surface toward center part of the plate thickness direction; and in which restraint of color change of the surface and increase of electrical contact resistance, and adhesiveness of a plating film are excellent due to maximum Mg concentration in the surface layer part is 90% of the center Mg concentration.
Abstract: Provided is a clamping tool for attaching a cutting insert to a holder or detaching a cutting insert from a holder, the cutting insert including a head portion having a circular cutting edge and a shaft portion, the clamping tool including: a first jaw portion configured to be locked to the holder; and an operation lever configured to be connected to the first jaw portion, in which the first jaw portion has a locking portion configured to be locked to the holder, and a first pressing portion configured to push the head portion downward and fit the shaft portion into a shaft hole portion of the holder when the operation lever is rotationally moved in a first direction using the locking portion as a fulcrum.
Abstract: A tin alloy plating solution of the present invention includes (A) a soluble salt or oxide including at least a stannous salt, (B) a soluble salt of a metal nobler than tin, (C) a tin complexing agent formed of a sugar alcohol having 4 or more and 6 or less carbon atoms, (D) a free acid, and (E) an antioxidant. In addition, a content of the tin complexing agent is 0.1 g/L or more and 5 g/L or less, and a concentration of divalent tin ions (Sn2+) is 30 g/L or more.