Patents Assigned to Mitsui Mining & Smelting Co., Ltd.
  • Patent number: 11594737
    Abstract: A membrane-electrode assembly including a catalyst layer that includes a catalyst-supporting carrier in which a catalyst is supported on a carrier made of an inorganic oxide, and a highly hydrophobic substance having a higher degree of hydrophobicity than the inorganic oxide, the catalyst layer being formed on at least one surface of a polymer electrolyte membrane. It is preferable that, in the membrane-electrode assembly, the degree of hydrophobicity of the highly hydrophobic substance is from 0.5 vol % to 45 vol % at 25° C., the degree of hydrophobicity being defined as a concentration of methanol (vol %) when a light transmittance of a dispersion obtained by dispersing the highly hydrophobic substance in a mixed solution of water and methanol reaches 80%.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: February 28, 2023
    Assignees: MITSUI MINING & SMELTING CO., LTD., UNIVERSITY OF YAMANASHI
    Inventors: Koji Taniguchi, Masahiro Watanabe, Makoto Uchida, Katsuyoshi Kakinuma
  • Publication number: 20230044366
    Abstract: Provided is an electrodeposited copper foil having high smoothness and exhibiting high flexibility (particularly, high flexibility after annealing at 180° C. for 1 hour) suitable for a flexible substrate. This electrodeposited copper foil has an Rz of 0.1 to 2.0 ?m on at least one surface. In cross-sectional analysis by EBSD, a proportion of an area occupied by copper crystal grains satisfying the following conditions relative to an area of an observation field occupied by copper crystal grains is 63% or more. The conditions are as follows: i) (101) orientation; ii) an aspect ratio of 0.500 or less; iii) | sin ?| of 0.001 to 0.707, where ?)(°) is an angle between a normal line of an electrode surface of the electrodeposited copper foil and a major axis of the copper crystal grain; and iv) when the crystal is elliptically approximated, a length of a minor axis of 0.38 ?m or smaller.
    Type: Application
    Filed: January 14, 2021
    Publication date: February 9, 2023
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Daisuke NAKAJIMA, Mitsuyoshi MATSUDA, Yasuji HARA, Mitsuhiro WADA
  • Patent number: 11576267
    Abstract: An extremely thin copper foil is provided that enables formation of highly fine different wiring patterns with a line/space (L/S) of 10 ?m or less/10 ?m or less on two sides of the copper foil and is thus usable as an inexpensive and readily processable substitution for silicon and glass interposers. The extremely thin copper foil includes, in sequence, a first extremely thin copper layer, an etching stopper layer, and the second extremely thin copper layer. Two sides of the extremely thin copper foil each have an arithmetic average roughness Ra of 20 nm or less.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: February 7, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Yoshinori Matsuura
  • Patent number: 11569528
    Abstract: In a solid electrolyte integrated device including a substrate with electrically insulated surfaces, a first lower electrode layer and a second upper electrode layer are electrically connected to each other on a first main surface side, and a first upper electrode layer, the first lower electrode layer, the second upper electrode layer, and a second lower electrode layer transmit ions and/or have ion redox ability, contain a metal or a metal oxide or both of a metal and a metal oxide, and have a permeable portion.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: January 31, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Shingo Ide, Isamu Yashima, Kenji Kume
  • Patent number: 11525073
    Abstract: There is a method of manufacturing a multilayer wiring board including: alternately stacking wiring layers and insulating layers; stacking a reinforcing sheet on one surface of the resulting multilayer laminate with a soluble adhesive layer therebetween, wherein an unoccupied region without the soluble adhesive layer is provided within a facing area where the reinforcing sheet faces the multilayer laminate; allowing a liquid capable of dissolving the soluble adhesive layer to infiltrate the unoccupied region to dissolve or soften the soluble adhesive layer; and releasing the reinforcing sheet from the multilayer laminate at the soluble adhesive layer. This method enables the multilayer wiring layer to be reinforced to generate no large local warpage, thereby improving the reliable connection and the surface flatness (coplanarity) of the multilayer wiring layer. The used reinforcing sheet can be released in a significantly short time, while minimizing the stress applied to the multilayer laminate.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: December 13, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori Matsuura, Tetsuro Sato, Toshimi Nakamura, Takenori Yanai
  • Patent number: 11527415
    Abstract: There is provided a method of manufacturing a multilayer wiring board including: alternately stacking wiring layers and insulating layers; stacking a reinforcing sheet having openings on one surface of the resulting multilayer laminate with a soluble adhesive layer therebetween; contacting or infiltrating the soluble adhesive layer with a liquid capable of dissolving the soluble adhesive layer through the openings to thereby dissolve or soften the soluble adhesive layer; and releasing the reinforcing sheet from the multilayer laminate at the position of the soluble adhesive layer. This method enables the multilayer wiring layer to be reinforced so as to generate no large local warpage, thereby improving the reliable connection in the multilayer wiring layer and the flatness (coplanarity) on the surface of the multilayer wiring layer. The reinforcing sheet having finished its role can be released in a significantly short time, while minimizing the stress applied to the multilayer laminate.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: December 13, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori Matsuura, Tetsuro Sato, Takenori Yanai, Toshimi Nakamura
  • Publication number: 20220389162
    Abstract: There is provided a resin composition exhibiting excellent dielectric properties, high adhesion to a low-roughness surface, heat resistance, and excellent water resistance. This resin composition includes (a) a polymer having a polyphenylene ether backbone and a butadiene backbone in one molecule and having at least one selected from the group consisting of a vinyl group, a styryl group, an allyl group, an ethynyl group and a (meth)acryloyl group and at least any one of (b) a polymer including a styrene butadiene backbone and (c) a polymer including a cycloolefin backbone, wherein the content is the component (a) of 15 to 60 parts by weight and the total content of the component (b) and the component (c) is 40 to 85 parts by weight, based on 100 parts by weight of the total content of the component (a), the component (b), and the component (c).
    Type: Application
    Filed: October 27, 2020
    Publication date: December 8, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Kazuhiro OOSAWA, Kuniharu OGAWA, Haruka MAKINO
  • Patent number: 11517881
    Abstract: The present invention provides an exhaust gas purifying catalyst including a first catalyst layer (12). The first catalyst layer (12) includes a first section (14) and a second section (15) in an exhaust gas flow direction, the first section (14) being located on an upstream side in the exhaust gas flow direction relative to the second section (15). The first section (14) and the second section (15) both contain a catalytically active component including a specific element. A concentration of the specific element is higher in the first section (14) than in the second section (15). A concentration gradient of the specific element contained in the first section (14) in a thickness direction of the catalyst layer (12) is milder than a concentration gradient of the specific element contained in the second section (15) in the thickness direction.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 6, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki Tanaka, Haruka Shimizu, Masaaki Inamura
  • Publication number: 20220351906
    Abstract: There is provided a double-sided copper-clad laminate for forming a capacitor that can exhibit excellent properties in voltage endurance and peel strength, while ensuring high capacitor capacity, when used as a capacitor. This double-sided copper-clad laminate includes an adhesive layer and a copper foil in order on each of both surfaces of a resin film, the resin film is in a cured state at 25° C., and each of the copper foils has a maximum peak height Sp of 0.05 ?m or more and 3.3 ?m or less as measured in accordance with ISO 25178 on a surface on a side being in contact with the adhesive layer.
    Type: Application
    Filed: June 4, 2021
    Publication date: November 3, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Ryuji ISHIZUKA, Yoshihiro YONEDA, Toshihiro HOSOI, Yuji KAGEYAMA
  • Patent number: 11485644
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 1, 2022
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
  • Patent number: 11465120
    Abstract: A nitrogen oxide storage material comprising: Mg1-yAl2O4-y, wherein y is a number satisfying 0?y?0.2, a noble metal, an oxide of a metal other than the noble metal, and a barium compound, the noble metal, the oxide, and the barium compound being loaded on Mg1-yAl2O4-y. The metal oxide comprises at least one metal oxide selected from zirconium oxide, praseodymium oxide, niobium oxide, and iron oxide.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 11, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Masaaki Inamura, Masaaki Haneda, Yuma Kako
  • Patent number: 11458460
    Abstract: An exhaust gas purifying catalyst (10) according to the present invention is an exhaust gas purifying catalyst including the first catalyst layer (12). The first catalyst layer (12) includes the first section (14) and the second section (15) in the exhaust gas flow direction. The first section (14) is located on the upstream side in the exhaust gas flow direction relative to the second section (15). A catalyst layer (16) contains a catalytically active component including a specific element. The concentration of the specific element in the catalyst layer (12) is higher in the first section (14) than in the second section (15), in terms of mass per unit volume. When the first section is divided in half along the thickness direction of the first catalyst layer (12), the ratio of a1 to a2, a1/a2, is 1.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: October 4, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki Tanaka, Yuki Nagao, Tokuya Watanabe
  • Patent number: 11447396
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: September 20, 2022
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
  • Patent number: 11433377
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23) each separating the inflow-side cell and the outflow-side cell. Catalyst portions (14, 15) are provided on surfaces of the partition walls that each face the inflow-side cell and/or surfaces of the partition walls that each face the outflow-side cell. In a cross section vertical to an exhaust gas flow direction, the percentage of the total area of voids, each void satisfying the expression L/{2(?S)1/2}?1.1, wherein L is the perimeter of the void in the cross section and S is the area of the void in the cross section, is from 3 to 10% based on the apparent area of the catalyst portion present on the partition wall.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: September 6, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yusuke Nagai, Shingo Akita, Hiroki Kurihara, Yoshinori Endo
  • Patent number: 11419210
    Abstract: An object of the present invention is to provide a resin composition which enables formation of a resin layer having excellent electrical performance including high frequency performance and appropriate solubility with desmear solution required on a material used in manufacturing of a printed wiring board. To achieve the object, the resin composition used for constituting a resin layer on a metal layer surface of a laminate includes a polyphenylene ether compound and 10 parts by mass to 100 parts by mass of a styrene-butadiene block copolymer and 0.1 parts by mass to 100 parts by mass of a component promoting solubility with desmear solution against 100 parts by mass of the polyphenylene ether compound.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: August 16, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshifumi Matsushima, Tetsuro Sato
  • Publication number: 20220223456
    Abstract: Provided is a carrier-attached metal foil with which both exposure for rough circuits and exposure for fine circuits in wiring formation can be performed based on the same alignment marks, and as a result, rough circuits and fine circuits can be simultaneously formed in a one-stage circuit formation process. This carrier-attached metal foil is a carrier-attached metal foil including a carrier, a release layer provided on at least one surface of the carrier, and a metal layer provided on the release layer, wherein the carrier-attached metal foil includes: a wiring region throughout which the carrier, the release layer, and the metal layer are present; and at least two positioning regions provided on the at least one surface of the carrier-attached metal foil and forming alignment marks used for positioning in wiring formation involving exposure and development.
    Type: Application
    Filed: May 18, 2020
    Publication date: July 14, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori MATSUURA, Toshimi NAKAMURA
  • Patent number: 11387487
    Abstract: A sulfur-containing compound containing a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, and a halogen (X) element, which can be suitably used as a solid electrolyte, and is able to suppress the generation of a hydrogen sulfide gas even when exposed to moisture in the atmosphere. The sulfur-containing compound has a peak at each position of 2?=21.3°±1.0°, 27.8°±1.0°, and 30.8°±0.5° in an X-ray diffraction pattern measured by an X-ray diffraction apparatus (XRD) using CuK?1 rays.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: July 12, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tsukasa Takahashi, Takahiro Ito, Masaru Hyakutake, Teruaki Yagi
  • Patent number: 11374248
    Abstract: An oriented apatite-type oxide ion conductor includes a composite oxide expressed as A9.33+x[T6.00?yMy]O26.0+z, where A represents one or two or more elements selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Be, Mg, Ca, Sr, and Ba, T represents an element including Si or Ge or both, and M represents one or two or more elements selected from the group consisting of B, Ge, Zn, Sn, W, and Mo, and where x is from ?1.00 to 1.00, y is from 0.40 to less than 1.00, and z is from ?3.00 to 2.00.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 28, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Shingo Ide, Yusuke Shiro
  • Publication number: 20220192029
    Abstract: There is provided a method for manufacturing a printed wiring board that effectively suppresses pattern failure and is also excellent in fine circuit forming properties. This method includes: providing an insulating substrate including a roughened surface; performing electroless plating on the roughened surface of the insulating substrate to form an electroless plating layer less than 1.0 ?m thick having a surface having an arithmetic mean waviness Wa of 0.10 ?m or more and 0.25 ?m or less as measured in accordance with JIS B0601-2001 and a kurtosis Sku of 2.0 or more and 3.5 or less as measured in accordance with ISO 25178; laminating a photoresist on the surface of the electroless plating layer; performing exposure and development to form a resist pattern; applying electroplating to the electroless plating layer; stripping the resist pattern; and etching away an unnecessary portion of the electroless plating layer to form a wiring pattern.
    Type: Application
    Filed: March 17, 2020
    Publication date: June 16, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori SHIMIZU, Hiroto IIDA, Misato MIZOGUCHI, Akitoshi TAKANASHI, Makoto HOSOKAWA
  • Publication number: 20220183158
    Abstract: There is provided a method for manufacturing a printed wiring board that effectively suppresses pattern failure and is also excellent in fine circuit forming properties. This method includes: providing an insulating substrate including a roughened surface; performing electroless plating on the roughened surface of the insulating substrate to form an electroless plating layer less than 1.0 ?m thick having a surface having an arithmetic mean waviness Wa of 0.10 ?m or more and 0.25 ?m or less and a valley portion void volume Vvv of 0.010 ?m3/?m2 or more and 0.028 ?m3/?m2 or less; laminating a photoresist on the surface of the electroless plating layer; performing exposure and development to form a resist pattern; applying electroplating to the electroless plating layer; stripping the resist pattern; and etching away an unnecessary portion of the electroless plating layer to form a wiring pattern.
    Type: Application
    Filed: March 17, 2020
    Publication date: June 9, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori SHIMIZU, Hiroto IIDA, Misato MIZOGUCHI, Akitoshi TAKANASHI, Makoto HOSOKAWA