Patents Assigned to Mitsui Mining & Smelting Co., Ltd.
  • Publication number: 20220169842
    Abstract: There is provided a resin composition including (a) an acrylic polymer having a tensile modulus of 200 MPa or less, (b) a resin that is solid at 25° C., (c) a resin that is liquid at 25° C. and crosslinkable with at least one of the component (a) or the component (b), and (d) a polymerization initiator. The content of the component (a) is 35 parts by weight or more and 93 parts by weight or less, the content of the component (b) is 3 parts by weight or more and 60 parts by weight or less, and the content of the component (c) is 1 part by weight or more and 25 parts by weight or less, based on 100 parts by weight of the total amount of the component (a), the component (b), and the component (c).
    Type: Application
    Filed: March 5, 2020
    Publication date: June 2, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Kazuhiro OOSAWA, Haruka MAKINO, Kuniharu OGAWA
  • Publication number: 20220162418
    Abstract: There is provided a resin composition that can greatly improve voltage endurance while ensuring high capacitance and excellent circuit adhesion, when used as the dielectric layer of a capacitor. This resin composition includes a binder component including bisphenol S, an epoxy resin curing agent having a phenolic hydroxyl group, and an epoxy resin; and a dielectric filler.
    Type: Application
    Filed: February 7, 2020
    Publication date: May 26, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshihiro HOSOI, Kenshiro FUKUDA, Yoshihiro YONEDA, Tomohiro ISHINO, Tetsuro SATO
  • Publication number: 20220139865
    Abstract: A bonded body is provided including: a bonding layer containing Cu; and a semiconductor element bonded to the bonding layer. The bonding layer includes an extending portion laterally extending from a peripheral edge of the semiconductor element. In a cross-sectional view in a thickness direction, the extending portion rises from a peripheral edge of a bottom of the semiconductor element or from the vicinity of the peripheral edge of the bottom of the semiconductor element, and includes a side wall substantially spaced apart from a side of the semiconductor element. Preferably, the extending portion does not include any portion where the side wall and the side of the semiconductor element are in contact with each other. A method for manufacturing a bonded body is also provided.
    Type: Application
    Filed: March 2, 2020
    Publication date: May 5, 2022
    Applicants: Mitsui Mining & Smelting Co., Ltd., Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kei ANAI, Shinichi YAMAUCHI, Jung-Lae JO, Takahiko SAKAUE
  • Patent number: 11317522
    Abstract: Provided is a method of manufacturing a circuit board involves: preparing a composite laminate including a support, a release layer, and a multilayered circuit board; disposing the composite laminate on a stage such that one face of the composite laminate is put into tight contact with the stage; and releasing the support or the multilayered circuit board from the release layer such that the support or the multilayered circuit board forms a convex face with a curvature radius of 200 to 5000 mm while the face of the composite laminate is kept in tight contact with the stage. The method according to the present invention can prevent the occurrences of defects, for example, breaking in the support and cracking and wire disconnections in the multilayered circuit board in manufacturing of circuit boards, such as coreless circuit boards, and ensure stable release of the support or the multilayered circuit board.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 26, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshimi Nakamura, Yoshinori Matsuura
  • Patent number: 11310910
    Abstract: A resin composition for use in a dielectric layer of a capacitor device or a capacitor-embedded printed circuit board is provided in which the resin composition can improve stability in capacitance and insulation properties of the capacitor device under high temperature and high humidity and ensures high adhesion of the dielectric layer to the device. The resin composition comprises a resin component and a dielectric filler. The resin component comprises an epoxy resin, an active ester resin, and an aromatic polyamide resin.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 19, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshihiro Yoneda, Toshifumi Matsushima, Toshihiro Hosoi, Kenshiro Fukuda
  • Patent number: 11302929
    Abstract: Provided is a method with which it is possible to easily produce an electrode catalyst having excellent catalytic performance such as kinetically controlled current density. The method involves: a dispersion liquid preparation step of preparing a dispersion liquid by mixing (i) at least one type of solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder constituted by a metal oxide, (iii) a platinum compound, (iv) a transition metal compound, and (v) an aromatic compound including a carboxyl group; and a loading step of heating the dispersion liquid to thereby load a platinum alloy of platinum and a transition metal on a surface of the catalyst carrier powder.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 12, 2022
    Assignees: MITSUI MINING & SMELTING CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Senoo, Koichi Miyake, Koji Taniguchi, Hiromu Watanabe, Naohiko Abe, Tatsuya Arai
  • Patent number: 11292964
    Abstract: Provided is a new phosphor which can be excited by visible light in a wide band to emit a broad fluorescence spectrum, and also to emit near-infrared light with high intensity. Proposed is a phosphor, which is an oxide comprising Ca, Cu, and Si, wherein the containing molar ratios of the elements are 0.15?Ca/Si<0.25 and 0.13?Cu/Si<0.25.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: April 5, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Ikuhiro Ozawa, Takayoshi Mori, Riko Sato, Jun-ichi Itoh
  • Patent number: 11285700
    Abstract: A multi-layered board includes: a middle conductive layer; a first dielectric layer that is disposed directly on a first surface of the middle conductive layer; a second dielectric layer that is disposed directly on a second surface of the middle conductive layer; a first outer surface conductive layer that is disposed directly on an outer side of the first dielectric layer; and a second outer surface conductive layer that is disposed directly on an outer side of the second dielectric layer. The first outer surface conductive layer serves as a first outer surface of the multi-layered board, and the second outer surface conductive layer serves as a second outer surface of the multi-layered board. The middle conductive layer is solidly formed over an entire planar direction of the multi-layered board. The first dielectric layer and the second dielectric layer each independently have a thickness variation of 15% or less.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 29, 2022
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Yoshihiro Yoneda
  • Patent number: 11266982
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23), each porous partition wall separating the cells (21, 22) from each other. A first catalyst portions (14) is provided at least on a portion of a side of the partition wall (23) that faces the inflow-side cell (21), the portion being located on an upstream side in an exhaust gas flow direction, and a second catalyst portion (15) is provided at least on a portion of a side of the partition wall that faces the outflow-side cell, the portion being located on a downstream side in the exhaust gas flow direction.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 8, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki Kurihara, Yu Sakurada, Yusuke Nagai, Yoshinori Endo, Takeshi Nabemoto, Shingo Akita
  • Patent number: 11260370
    Abstract: A composition for exhaust gas purification including first alumina including alumina containing lanthanum and second alumina including alumina containing lanthanum. The first alumina has a higher lanthanum content than the second alumina. The second alumina has a larger particle size than the first alumina. The lanthanum content of the first alumina is preferably 2 to 12 mass %, in terms of oxide, based on the total mass of alumina and lanthanum oxide of the first alumina. The lanthanum content of the second alumina is preferably 9 mass % or less, in terms of oxide, based on the total mass of alumina and lanthanum oxide of the second alumina.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 1, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yasuhiro Shimamoto, Hironori Iwakura, Tomoya Hoshinoo
  • Publication number: 20220022326
    Abstract: There is provided a laminate in which a decrease in the release function of a release layer can be suppressed even when the laminate is heat-treated under either temperature condition of low temperature and high temperature. This laminate includes a carrier; an adhesion layer on the carrier and containing a metal M1 having a negative standard electrode potential; a release-assisting layer on a surface of the adhesion layer opposite to the carrier and containing a metal M2 (M2 is a metal other than an alkali metal and an alkaline earth metal); a release layer on a surface of the release-assisting layer opposite to the adhesion layer; and a metal layer on a surface of the release layer opposite to the release-assisting layer, and T2/T1, a ratio of a thickness of the release-assisting layer, T2, to a thickness of the adhesion layer, T1, is more than 1 and 20 or less.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 20, 2022
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Rintaro ISHII, Takenori YANAI, Yoshinori MATSUURA
  • Patent number: 11215592
    Abstract: There is provided a separation method in which a target component in a solution can be separated simply but safely and efficiently without contamination from the environment. This method includes: providing a solution containing a target component, and a reaction reagent; while continuously feeding the solution and the reaction reagent to a flow path, intermittently injecting bubbles into the flow path to produce a gas-liquid slug flow in which a mixed liquid containing the solution and the reaction reagent is segmented into a plurality of droplets by the bubbles; continuing the feed of the gas-liquid slug flow in the flow path, thereby facilitating the mixing of the solution and the reaction reagent, and the gasification of the target component by the mixing, in each droplet, and the movement of a target component-derived gas produced by the gasification to the bubbles; and recovering the target component-derived gas with an absorbing liquid.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: January 4, 2022
    Assignees: MITSUI MINING & SMELTING CO., LTD., BL TEC K.K.
    Inventors: Makoto Nagaoka, Fumihiro Yoshinaga, Atsumi Koyanagi, Shunichi Hatamoto, Yozo Ishihara, Makiko Kumagai, Takashi Nishimura
  • Patent number: 11208931
    Abstract: In an exhaust gas purifying catalyst according to the present invention, a substrate includes inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. Catalyst portions include: first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction, and second catalyst portions, each second catalyst portion being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side, and the exhaust gas purifying catalyst satisfies the following expressions: IB1/IA×100?60%, IB2/IA×100?60%, IC1/IA×100?3%, and IC2/IA×100?3%, where IA, IB1, IB2, IC1, and IC2 represent pore volumes, definitions of which can be found in the specification.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 28, 2021
    Assignees: Mitsui Mining & Smelting Co., Ltd., HONDA MOTOR CO., LTD.
    Inventors: Hiroki Kurihara, Yusuke Nagai, Shingo Akita, Yoshinori Endo, Takeshi Mori, Takayuki Watanabe, Tomoko Tsuyama
  • Patent number: 11196083
    Abstract: As a novel sulfide compound having a low elastic modulus while retaining the high ion conductivity, a sulfide compound for a solid electrolyte of a lithium secondary battery that includes a crystal phase of a cubic argyrodite type crystal structure, and is represented by the compositional formula: Li7?xPS6?xClyBrz, wherein x in the compositional formula satisfies x=y+z and 1.0<x?1.8, and a ratio (z/y) of the molar ratio of Br to the molar ratio of Cl is from 0.1 to 10.0 is proposed.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: December 7, 2021
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tsukasa Takahashi, Takashi Chikumoto, Takahiro Ito, Hideo Uesugi
  • Patent number: 11195635
    Abstract: Provided is a method for manufacturing a conductive film, including forming a coating of a composition that contains conductivity-imparting particles and photo-sintering the coating, wherein, prior to the photo-sintering of the coating, the coating is compressed in the thickness direction thereof. It is preferable that the coating be compressed at a temperature at which a binding agent contained in the composition shows a storage modulus of 100 MPa or less. It is also preferable that the coating be compressed so that the compression rate in the thickness direction is from 25% to 80%. It is preferable that, in the photo-sintering step, the light irradiation be performed through irradiation with pulsed light.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 7, 2021
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Kei Anai, Shun Fukuzato
  • Patent number: 11189841
    Abstract: This method for producing an electrode catalyst includes: a dispersion liquid preparation step wherein a dispersion liquid is prepared by mixing (i) at least one solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder composed of a metal oxide, (iii) a platinum compound, (iv) a transition metal compound and (v) an aromatic compound that contains a carboxyl group; a loading step wherein the dispersion liquid is heated so that a platinum alloy of platinum and a transition metal is loaded on the surface of the catalyst carrier powder; a solid-liquid separation step wherein a dispersoid is separated from the dispersion liquid after the loading step, thereby obtaining a catalyst powder wherein the catalyst carrier powder is loaded with the platinum alloy; and a heat treatment step wherein the catalyst powder is heated under vacuum or in a reducing gas atmosphere.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 30, 2021
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yuichi Senoo, Koichi Miyake, Koji Taniguchi, Hiromu Watanabe, Naohiko Abe
  • Patent number: 11166383
    Abstract: There is provided a resin-coated copper foil including a resin layer having excellent dielectric characteristics suitable for high frequency applications, exhibiting high interlayer adhesion and heat resistance in the case where the resin layer is used in a copper-clad laminate or printed circuit board. The resin-coated copper foil of the present invention includes a copper foil and a resin layer on at least one side of the copper foil. The resin layer comprises a resin mixture containing an epoxy resin, a polyimide resin, and an aromatic polyamide resin; and an imidazole curing catalyst.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: November 2, 2021
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshihiro Yoneda, Toshifumi Matsushima, Toshihiro Hosoi, Fujio Kuwako
  • Publication number: 20210328325
    Abstract: Provided is a carrier-attached metal foil which has excellent carrier-releasability and excellent selective metal layer-etchability, and can achieve a reduction in transmission loss and resistance in a semiconductor package (for example, a millimeter-wave antenna substrate) manufactured using the same. The carrier-attached metal foil includes: (a) a carrier; (b) a release functional layer on the carrier and including (b1) an adhesion layer disposed closer to the carrier and having a thickness of more than 10 nm and less than 200 nm and (b2) a release assistance layer disposed farther from the carrier and having a thickness of 50 nm or more and 500 nm or less; and (c) a composite metal layer on the release functional layer and including (c1) a carbon layer disposed closer to the release assistance layer, and (c2) a first metal layer disposed farther from the release assistance layer and mainly composed of Au or Pt.
    Type: Application
    Filed: November 19, 2019
    Publication date: October 21, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Mikiko KOMIYA, Takenori YANAI, Rintaro ISHII, Yoshinori MATSUURA
  • Publication number: 20210327847
    Abstract: A method for producing a semiconductor package, capable of suppressing damage of a device, and dissolving or softening a tacky layer quickly to peel off a reinforcing sheet, is provided. This method includes: providing a tacky sheet including a soluble tacky layer, making a first laminate, obtaining a second laminate having a second support substrate bonded to the first laminate, peeling off a first support substrate to obtain a third laminate, mounting a semiconductor chip thereon to obtain a fourth laminate, sealing a right end surface and a left end surface of the fourth laminate with sealing members and immersing a lower end surface of the fourth laminate selectively in a solution, giving a pressure difference between an inner space and the solution to allow the solution to penetrate into the internal space and dissolve or soften the soluble tacky layer, and peeling off the second support substrate.
    Type: Application
    Filed: November 11, 2019
    Publication date: October 21, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshimi NAKAMURA, Tetsuro SATO
  • Publication number: 20210327848
    Abstract: A method for producing a semiconductor package, capable of effectively suppressing contamination of a chemical liquid and unintended peeling-off of a reinforcing sheet, is provided. This method includes providing a tacky sheet including a substrate sheet, and a soluble tacky layer and a banking tacky layer on at least one surface of the substrate sheet; making a first laminate including a redistribution layer; using the tacky sheet to obtain a second laminate having a second support substrate bonded to a surface on the redistribution layer side of the first laminate with the tacky layer therebetween; peeling off the first support substrate, pretreating the resulting third laminate; mounting a semiconductor chip on a pretreated surface of the redistribution layer; immersing the third laminate in a solution to dissolve or soften the tacky layer; and peeling off the second support substrate in a state where the tacky layer is dissolved or softened.
    Type: Application
    Filed: November 11, 2019
    Publication date: October 21, 2021
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Toshimi NAKAMURA, Tetsuro SATO