Abstract: A heat conductive paste including silver fine particles having an average particle diameter of primary particles of 40 to 350 nm, a crystallite diameter of 20 to 70 nm, and a ratio of the average particle diameter to the crystallite diameter of 1 to 5, an aliphatic primary amine and a compound having at least one phosphoric acid group. The heat conductive paste includes 1 to 40 parts by mass of the aliphatic primary amine and 0.001 to 2 parts by mass of the compound having at least one phosphoric acid group based on 100 parts by mass of the silver fine particles. The heat conductive paste has a high conductivity.
Abstract: A conductive composition, which can form bonded portions and is capable of maintaining a thickness of the bonded portions and bonding strength, and which includes: (A) silver fine particles having a number average particle diameter of primary particles of 40 nm to 400 nm, (B) a solvent, and (C) thermoplastic resin particles having a maximal value of an endothermic peak in a DSC chart, determined by a measurement using a differential scanning calorimeter, within a range of 80° C. to 170° C.
Abstract: A process for producing conductive pastes for forming solar cell electrodes, including a step of measuring binding energies of oxygen in a glass frit by X-ray photoelectron spectroscopy, a step of selecting a glass frit providing an X-ray photoelectron spectrum representing binding energies of oxygen in which the signal intensity of a peak with a peak top at a range from 529 eV to less than 531 eV has a proportion of 40% or more relative to the total of signal intensities from 526 eV to 536 eV, and a step of mixing together a conductive powder, the glass frit and an organic vehicle.
Abstract: The present invention is intended to provide a semiconductor device including adherends bonded with a cured product of an adhesive, the semiconductor device being configured such that a decrease in bonding strength after curing in a moisture resistance test is suppressed. In this semiconductor device, at least two adherends 20 and 70, 70 and 60, 70 and 50 made of at least one material selected from the group consisting of engineering plastic, ceramics, and metal are bonded with a cured product 10 of an adhesive containing (A) thermosetting resin, (B) a particular thiol compound, and (C) a latent curing agent.
Abstract: The present invention provides a surface-treated silica filler for suppressing an increase in viscosity when added to a resin composition used for applications such as a semiconductor sealing material, and the resin composition containing the surface-treated silica filler. The surface-treated silica filler of the present invention is surface-treated with a basic substance having an acid dissociation constant (pKa) of its conjugate acid of 9.4 or more.
Abstract: Provided is a thermosetting resin composition, which can be used as underfill for obtaining favorable solder connectivity while suppressing the formation of voids in the case of treating under heating conditions required by the underfill in a semiconductor chip thermocompression bonding step using the thermal compression bonding technique. The thermosetting resin composition contains a thermosetting resin, a curing agent and a fluxing agent, and the temperature at which the rate of temperature change of viscosity when temperature is increased according to a prescribed heating profile reaches 30 Pa·s/° C. is 200° C. to 250° C.
Abstract: A sintered body of silver fine particles for a bonding member to bond components of a semiconductor device, wherein an activation energy for creep of the sintered body of the silver fine particles is from 0.4 to 0.75 times that of an activation energy for a lattice diffusion of bulk silver.
Abstract: The purpose of the present invention is to provide a conductive copper paste which is curable in an ambient atmosphere, has a long pot life, and, has a low specific resistance even under a high-temperature and short-time curing condition, wherein the specific resistance after curing does not greatly vary depending on a copper powder content. The conductive copper paste provided is characterized by containing (A) a copper powder, (B) a thermosetting resin, (C) a fatty acid that is liquid at normal temperature, and (D) triethanolamine. Preferably, component (B) is a resol-type phenol resin. More preferably, the content of component (B) is 10 to 20 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B).
Abstract: Provided is a conductive paste for forming a bus bar electrode having high adhesive strength on a passivation film in a crystalline silicon solar cell without having a detrimental effect on the passivation film so as to affect solar cell properties. The conductive paste is a conductive paste for forming an electrode formed on a passivation film of a solar cell, containing: (A) conductive particles, (B) an organic vehicle, and (C) glass frit containing Bi2O3 at 10 mol % to 30 mol % and SiO2 at 5 mol % to 30 mol %, wherein the conductive paste contains the glass frit at 0.3 parts by weight to 2 parts by weight based on 100 parts by weight of the conductive particles.
Abstract: Provided is a resin composition for a film, which is used for producing the film having excellent insulating properties and thermal conductivity. The provided resin composition for the film contains a thermosetting resin (A) and hexagonal boron nitride secondary agglomerated particles (B). Here, the hexagonal boron nitride secondary agglomerated particles (B) contains hexagonal boron nitride secondary agglomerated particles (B-1) having a cohesive breaking strength of 7 MPa or more and hexagonal boron nitride secondary agglomerated particles (B-2) having a cohesive breaking strength of 3 MPa or more and less than 7 MPa.
Abstract: There is provided a resin composition which has long-term heat resistance, rapid curing properties, high adhesive strength during heating, a low change ratio of adhesive strength, and a low normal temperature elastic modulus. The resin composition includes (A) a compound having in its molecule an OH group and any one of primary to tertiary amines, (B) dicyandiamide and/or imidazoles, (C) bismaleimides, and (D) a compound having in its molecule one or more epoxy groups, or cyanate ester.
Abstract: A method of manufacturing a bonded body in which a first body and a second body are bonded using a glass paste. The glass paste includes a crystallized glass frit (A) and a solvent (B). A remelting temperature of the crystallized glass frit (A) is higher than a crystallization temperature thereof which is higher than a glass transition temperature thereof. The method includes: applying the glass paste on at least one of the first and second bodies, bonding the first and second bodies by interposing the glass paste therebetween, heating the bonded first and second bodies to a temperature that is not lower than the crystallization temperature and lower than the remelting temperature of the crystallized glass frit (A), and obtaining the bonded body by cooling the bonded first and second bodies to a temperature that is not higher than the glass transition temperature of the crystallized glass frit.
Type:
Grant
Filed:
April 6, 2016
Date of Patent:
May 14, 2019
Assignee:
NAMICS CORPORATION
Inventors:
Raymond Dietz, Cathy Shaw Trumble, Maciej Patelka, Akito Yoshii, Noriyuki Sakai, Hiroshi Yamaguchi
Abstract: An object of the present invention is to provide a resin composition suitable for copper pastes, which can be cured in an ambient atmosphere and has a viscosity within an appropriate range and a low specific resistance after curing. This resin composition includes (A) a copper powder, (B) a thermosetting resin, (C) a fatty acid, (D) an amine, and (E) 4-aminosalicylic acid. Preferably, the (B) component is resol-type phenolic resin. More preferably, the (C) component is at least one selected from oleic acid, linoleic acid, linolenic acid, stearic acid, palmitic acid, lauric acid, butyric acid, and propionic acid.
Abstract: There is provided a resin composition which can be thermoset at a temperature of approximately 80° C., and has excellent PCT resistance and a long pot life. This resin composition is suitable as a one-component adhesive agent to be used during the manufacture of image sensor modules or electronic components. The resin composition according to the present invention is a resin composition having the following characteristics. The resin composition includes (A) a compound represented by formula (1) below, an oligomer having as its basic skeleton a structure represented by formula (2) below, (C) an epoxy resin, and (D) a curing accelerator. The mass ratio ((B)/(A)) between the compound of the (A) component and the oligomer of the (B) component is 5 to 25%. Furthermore, the total content of the compound of the (A) component and the oligomer of the (B) component is 0.5 equivalents to 2.
Abstract: There is provided a photocurable and thermosetting resin composition which suppresses decrease of adhesive strength in a moisture resistance test of the cured resin composition, and has a sufficiently long pot life. The resin composition includes (A) an acrylic resin, (B) a multifunctional nitrogen-containing heterocyclic compound represented by a specific chemical formula, (C) a latent curing agent, (D) a radical polymerization inhibitor, and (E) an anionic polymerization retarder. The resin composition preferably further includes (F) a compound having a glycidyl group, other than the acrylic resin.
Abstract: An electrically conductive paste used to form an electrode used for electrical connection to a p-type semiconductor layer of a crystalline silicon solar cell, wherein the electrically conductive paste is able to fire through an antireflective film during firing and is capable of forming an electrode having low contact resistance on a p-type semiconductor layer. The electrically conductive paste contains (A) an electrically conductive powder, (B) Al powder or Al compound powder having an average particle diameter of 0.5 ?m to 3.5 ?m, (C) a glass frit and (D) an organic medium, and contains 0.5 parts by weight to 5 parts by weight of the Al powder or Al compound powder (B) based on 100 parts by weight of the electrically conductive powder (A).
Abstract: A conductive paste of the present invention includes (A) a silver powder, (B) a glass frit, (C) an organic binder and (E) an oxide of a platinum group element and/or a compound which can be converted to an oxide of a platinum group element. The conductive paste has excellent solder heat resistance and adhesion to a substrate.
Abstract: An epoxy resin composition includes: (A) epoxy resin; (B) a curing agent; (C) 0.1 to 10 mass % of silica filler with an average particle size of 10 nm or more and 100 nm or less; (D) 47 to 75 mass % of silica filler with an average particle size of 0.3 ?m or more and 2 ?m or less; and (E) 0.1 to 8 mass % of elastomer, wherein the component (C) and the component (D) are contained by 50.1 to 77 mass % in total.
Abstract: An electro-conductive paste which includes an electro-conductive powder, a multiple oxide containing tellurium oxide, and an organic vehicle. The electro-conductive paste contains 0.1 parts by weight to 10 parts by weight of the multiple oxide based on 100 parts by weight of the electro-conductive powder, and the content ratio of the tellurium oxide in 100% by weight of the multiple oxide as TeO2 is 3% by weight to 30% by weight.
Abstract: A resin composition which includes (A) an epoxy resin, (B) a curing agent, and (C) carbon nanotubes, wherein the carbon nanotubes contain therein semiconducting single-walled carbon nanotubes in an amount of 70% by weight or more. A cured product of a paste made from the resin composition can be used to form a varistor element.