Abstract: The invention relates to an electrode for a discharge lamp, wherein the electrode has a base body having an electrode plateau providing an end face of the electrode, wherein the base body is delimited by the electrode plateau in a longitudinal extension direction of the electrode. Furthermore, the electrode has a coating, arranged in at least a first region of the base body that is different from the electrode plateau, to increase an emission of heat. In addition, the electrode has an at least partially contiguous free region of the base body extending at least partly in the longitudinal extension direction as far as the electrode plateau, in which the coating for increasing the emission of heat is not arranged, and wherein the first region adjoins at least one section of the free region in the circumferential direction of the electrode.
Abstract: An arrangement having a plurality of lighting modules and a method for producing an arrangement having a plurality of lighting modules are disclosed.
Abstract: An arrangement is disclosed. The arrangement comprises at least one semiconductor structure configured to convert a primary radiation into a secondary radiation; an encapsulation layer covering the at least one semiconductor structure; and at least one reflective layer arranged on the encapsulation layer. The semiconductor structure is arranged in a center of the arrangement, and a lateral extent of the arrangement is chosen such that an optically resonant condition is fulfilled for a wavelength of the secondary radiation in the encapsulation layer. Methods for producing an arrangement and an optoelectronic device are also disclosed.
Abstract: An optoelectronic semiconductor component for the emission of multicolored radiation may have a multiplicity of active regions arranged next to one another. The active regions may be configured as microrods or nanorods and configured to generate primary electromagnetic radiation. A first group of the active regions may respectively be followed in an emission direction by a first luminescence conversion element, which is suitable for converting the primary radiation into first secondary radiation. A second group of the active regions is respectively followed in the emission direction by a second luminescence conversion element, which is suitable for converting the primary radiation into second secondary radiation. The primary radiation, the first secondary radiation, and the second secondary radiation having different colors.
Abstract: A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
Type:
Grant
Filed:
February 17, 2020
Date of Patent:
October 26, 2021
Assignee:
OSRAM OLED GmbH
Inventors:
Daniel Riedel, Andreas Rausch, Ulrich Niedermeier
Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
Type:
Grant
Filed:
September 30, 2020
Date of Patent:
October 26, 2021
Assignee:
OSRAM Opto Semiconductors GmbH
Inventors:
Peter Brick, Jean-Jacques Drolet, Hubert Halbritter, Laura Kreiner, Thomas Schwarz, Tilman Ruegheimer, Frank Singer
Abstract: A cover for an optoelectronic component includes a body of a first material, the body includes a lower side and, starting from the lower side, a recess for the optoelectronic component, the body includes a side surface adjacent to the lower side, the recess is continued as far as the side surface, a plate of a second material is arranged on the side surface, the second material being transparent for a radiation wavelength of the optoelectronic component, and the body and the plate are connected.
Abstract: The invention relates to an optoelectronic component (100) having a semiconductor chip (2) for generating a primary radiation in the blue spectral range, a conversion element (4) which is arranged in the beam path of the semiconductor chip and is designed to generate a secondary radiation from the primary radiation, wherein the conversion element (4) comprises at least one first phosphor (9) and a second phosphor (10), wherein the first phosphor (9) is Sr(Sr1?xCax)Si2Al2N6:Eu2+ and/or (Sr1?yCay)[LiAl3N4]:Eu2+, where 0?x?1 and 0?y?1, wherein a total radiation (G) exiting from the component (100) is white mixed light.
Abstract: An optoelectronic component and a lighting apparatus are disclosed. In an embodiment an optoelectronic component includes a carrier having an upper side and an underside opposite the upper side, an optoelectronic semiconductor chip arranged on the upper side of the carrier, the semiconductor chip configured to emit primary radiation during operation via one or more sides. The component further includes a first conversion layer having an inorganic phosphor on the semiconductor chip, the first conversion layer covering at least all radiation-emitting sides of the semiconductor chip not facing the carrier and a solid body in which an organic phosphor is distributed, wherein the solid body is arranged and fastened on the carrier and is at least in indirect contact with the carrier, and wherein the solid body is spaced from the radiation-emitting sides of the semiconductor chip at least by the first conversion layer and/or by the carrier.
Abstract: An optical assembly and a display device are disclosed. In an embodiment an optical assembly includes a common carrier, a plurality of first chip groups, each first chip group comprising at least two similar luminescence diode chips, a plurality of second chip groups, each second chip group comprising at least two similar luminescence diode chips, wherein the first and second chip groups are arranged planar along a regular grid of first unit cells on a main surface of the common carrier and an optical element arranged downstream of the first and second chip groups with respect to a main radiation direction, wherein the luminescence diode chips of the different chip groups are configured to emit electromagnetic radiation of different wavelength characteristics.
Type:
Grant
Filed:
May 11, 2017
Date of Patent:
October 19, 2021
Assignee:
OSRAM OLED GMBH
Inventors:
Peter Brick, Matthias Sabathil, Frank Singer, Thomas Schwarz
Abstract: A light emitting filament device comprising a carrier extending in a longitudinal direction and having a first main surface, a second main surface opposite to the first main surface, and two side surfaces interconnecting the two main surfaces. Optoelectronic components are disposed on the first main surface of the carrier. A first converter layer is arranged on the first main surface of the carrier and covers the optoelectronic components. A second converter layer is arranged on the second main surface of the carrier. The carrier is designed at at least one location along the longitudinal direction such that at least one of the two side surfaces includes an angle with the first main surface of greater than 90°. The carrier is trapezoidal in cross-section at the at least one location.
Abstract: A heating apparatus, a method and a system for producing semiconductor chips in a wafer assembly are disclosed. In an embodiment a heating device includes a heating plane configured to be arranged parallel to a plane of the semiconductor chips in the wafer composite and a first heating unit extending substantially in a radial direction with respect to a reference point in the heating plane, wherein the first heating unit includes a plurality of inductive heating elements arranged adjacent to each other in a substantially radial direction, each inductive heating element having a predetermined distance from the reference point, and wherein the inductive heating elements are formed as electromagnets or permanent magnets configured to generate eddy currents in a carrier of the wafer composite.
Abstract: A headlamp includes a first semiconductor chip and a second semiconductor chip for generating light. The first and second semiconductor chips each include several pixels. A first optics is arranged to direct light from the first semiconductor chip with a first magnification into a base region. Via a second optics, light of the second semiconductor chip is directed into a bright region with a second magnification. The second magnification is between 0.3 times and 0.7 times the first magnification inclusive, so that the bright region is smaller than the base region. The bright region is within the base region.
Abstract: A semiconductor nanocrystal structure may include a core, an inner absorption shell surrounding the core, at least one emission shell surrounding the inner absorption shell, and an outer absorption shell surrounding the emission shell(s). The core may include a different material than the optional inner absorption shell and/or the outer absorption shell. The core may be less absorbent to electromagnetic radiation as compared to the optional inner absorption shell and/or the outer absorption shell. An optoelectronic device may include the semiconductor nanocrystal structure.
Type:
Grant
Filed:
March 18, 2020
Date of Patent:
October 19, 2021
Assignee:
OSRAM Opto Semiconductors GmbH
Inventors:
Joseph A. Treadway, Benjamin Daniel Mangum, David O'Brien
Abstract: A lighting device (1000; 1; 2) having at least one semiconductor light source (1040) and at least one electrical resistance element (1020) which comprises at least one coiled filament (1021), the at least one resistance element (1020) being connected in series with the at least one semiconductor light source (1040).
Abstract: In an embodiment, an arrangement includes an optoelectronic device including a plurality of components configured to generate electromagnetic radiation, wherein the components are arranged in a grid having identical spacings and a scattering element for expanding a radiation region of the electromagnetic radiation of the device, the scattering element comprising a first layer having first linear structures, the first structures being arranged parallel to one another and a second layer having second linear structures, the second linear structures being aligned parallel to one another, wherein the first linear structures and the second linear structures are arranged at a predefined angle of between 1° and 179°, wherein the first linear structures and/or the second linear structures constitute wave peaks and wave valleys, wherein adjacent wave valleys and adjacent wave peaks constitute a periodic spacing, and wherein the periodic spacing deviates at most by 20% from a multiple of the periodic spacing of the comp
Abstract: An optoelectronic semiconductor component is specified which comprises a semiconductor layer sequence having a first and a second semiconductor layer of a first conductivity type, an active layer designed for generating electromagnetic radiation, a first electrical terminal layer and a second electrical terminal layer laterally spaced therefrom which electrically contacts the second semiconductor layer, and a first contact zone of a second conductivity type which adjoins the first electrical terminal layer and is electrically conductively connected to the first electrical terminal layer. And at least one functional region formed between the first and second terminal layers, in which a second contact zone of a second conductivity type and at least one shielding zone of a second conductivity type is formed. Furthermore, a method for producing the optoelectronic semiconductor component is specified.
Abstract: A system for monitoring the irradiation of an object with light from a luminaire includes the luminaire having one or more light sources, which emit light having a spatial radiation pattern; a computing unit, connected to the luminaire and set up to acquire information about an illuminance of the light of the light sources; a first memory, connected to the computing unit and in which information about spatial positioning of the luminaire relative to a surface of the object is stored; and a second memory, connected to the computing unit and in which information about the spatial radiation pattern of the light sources is stored. The computing unit may calculate and output a local intensity of light incident at the respective position on the basis of illuminance information, the spatial radiation pattern of the light sources, and the spatial positioning of the luminaire relative to the surface of the object.