Abstract: A node for a multi-hop communication network may include a wireless communication interface, configured to exchange data with the multi-hop communication network. The node moreover includes a processing unit, configured to drive the operation of the node as a function of the commands received via the wireless communication interface, and a memory storing a firmware for the processing unit. The node is configured to receive, via the wireless communication interface, an updated firmware, and to store the updated firmware into the memory. Moreover, the node is configured to detect, via the wireless communication interface, other nodes that are in the vicinity of the node, and to send (1010) the firmware stored in the memory to one or more of said nodes.
Abstract: An optoelectronic semiconductor chip includes a semiconductor body including a first semiconductor region and a second semiconductor region, a recess extending through the first semiconductor region, the recess having a bottom surface, where the second semiconductor region is exposed, and a blocking element arranged on the bottom surface, wherein the at least one recess has a first width and a second width parallel to the main extension plane of the semiconductor body, and the first width is smaller than the second width.
Abstract: An optical system includes optical fibers, a decoupling surface, an intersecting surface and a connecting portion. The optical fibers are arranged in at least one row. Each of the optical fibers includes a coupling surface onto which light from a light source is received. Light is directed through the optical fibers along an optical main axis. Light emitted from the optical fibers is directed onto a decoupling surface. The connecting portion is planar and is disposed between the decoupling surface and the optical fibers. The intersecting surface bounds the decoupling surface and is parallel to the optical main axis. Each of the optical fibers has an intersecting face oriented parallel to the optical main axis and parallel to the intersecting surface. The intersecting surface and the intersecting faces of the optical fibers generate a sharp outer edge of a light pattern formed by light emitted from the optical system.
Abstract: A radiation-emitting component includes a semiconductor layer sequence including first and second semiconductor layers, and an active region and is arranged between the first and second semiconductor layers, first and second electrodes electrically connect to the first and second semiconductor layers, a semiconductor layer sequence generates electromagnetic radiation depending on a current flow between the first and second electrodes, a driver field-effect transistor includes at least one driver gate and at least one driver channel, the second electrode and the driver channel electrode separately electrically connect to the driver channel and the driver gate electrode electrically connects to the driver gate, and the driver field-effect transistor is configured to control a current flow between the driver channel electrode and the second electrode through the driver channel and thereby the current flow between the first and second electrodes, depending on a voltage applied to the driver gate electrode.
Abstract: An LED unit comprises a substrate and a first LED chip. The first LED chip may include a first light-emitting surface arranged on the substrate in such a way that light emitted from the first LED chip radiates in a direction of radiation of the LED unit. The LED unit includes a second LED chip comprising a second light-emitting surface and arranged above the first LED chip in such a way that the second LED chip at least partially covers the first LED chip and radiates light emitted from the second LED chip in the direction of radiation of the LED unit. The LED unit comprises a first conversion layer at least partially covering the first light-emitting surface and/or at least partially laterally surrounding the first LED chip. A second conversion layer at least partially covers the second LED chip.
Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body comprising a first region of a first conductive type, an active region, a second region of a second conductive type and a coupling-out surface, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, wherein the coupling-out surface is arranged plane-parallel to the rear surface, and wherein the coupling-out surface and the rear surface of the semiconductor body are produced by an etching process.
Type:
Grant
Filed:
May 10, 2019
Date of Patent:
May 11, 2021
Assignee:
OSRAM OLED GMBH
Inventors:
Harald König, Jens Ebbecke, Alfred Lell, Sven Gerhard, Clemens Vierheilig
Abstract: First adapter (10) and second adapter (40) are each separately securable to a respective automotive light bar (200, 201) at mutually facing lateral light bar end caps (206). The adapters (10, 40) interfit, such as first adapter (10) having one or more tenons (14; 18) received in shape-conforming recess or mortise (44) of second adapter (40). The coupling assembly formed from interfit first and second adapters (10, 40) sufficiently supports a midspan region of conjoined light bars (200, 201) to permit omission of mounting L-brackets (208) conventionally required at the mutually facing light bar ends (206), thus allowing fewer holes to be drilled in vehicle roof or bumper (212) and resulting in an aesthetically cleaner presentation of the overall lengthened light bar assembly.
Abstract: A semiconductor chip and a method for producing a semiconductor chip are disclosed. In an embodiment an electronic semiconductor chip includes a growth substrate with a growth surface, which is formed by a planar region having a plurality of three-dimensional surface structures on the planar region, a nucleation layer composed of oxygen-containing AlN directly disposed on the growth surface and a nitride-based semiconductor layer sequence disposed on the nucleation layer, wherein the semiconductor layer sequence is selectively grown from the planar region such that a growth of the semiconductor layer sequence on surfaces of the three-dimensional surface structures is reduced or non-existent compared to a growth on the planar region, and wherein a selectivity of the growth of the semiconductor layer sequence on the planar region is targetedly adjusted by an oxygen content of the nucleation layer.
Type:
Grant
Filed:
April 15, 2019
Date of Patent:
May 11, 2021
Assignee:
OSRAM OLED GMBH
Inventors:
Werner Bergbauer, Thomas Lehnhardt, Jürgen Off, Joachim Hertkorn
Abstract: A method for producing a semiconductor chip (100) is provided, in which, during a growth process for growing a first semiconductor layer (1), an inhomogeneous lateral temperature distribution is created along at least one direction of extent of the growing first semiconductor layer (1), such that a lateral variation of a material composition of the first semiconductor layer (1) is produced. A semiconductor chip (100) is additionally provided.
Type:
Grant
Filed:
July 31, 2019
Date of Patent:
May 11, 2021
Assignee:
OSRAM OLED GMBH
Inventors:
Christoph Eichler, Andre Somers, Harald Koenig, Bernhard Stojetz, Andreas Loeffler, Alfred Lell
Abstract: An optically effective element includes a carrier, a first optically effective structure arranged on a top side of the carrier, and a cover arranged above the first optically effective structure. A method of producing an optically effective element includes providing a carrier, forming a first optically effective structure on a top side of the carrier, and arranging a cover above the top side of the carrier and the first optically effective structure.
Type:
Grant
Filed:
September 1, 2017
Date of Patent:
May 4, 2021
Assignee:
OSRAM OLED GmbH
Inventors:
Roland Enzmann, Hubert Halbritter, Markus Arzberger, Andreas Ploessl, Roland Schulz, Georg Rossbach, Bernd Boehm, Frank Singer, Matthias Sabathil
Abstract: A vehicle lamp capsule 32 having a base 34 having a spring 5 which, when lamp capsule 32 is installed, biases an inner surface of a vehicle lamp reflector 12. Spring 5 is monolithically formed with base 34 along with at least one reflector-locating structure on the base such as circumferentially extending exterior locating surface 44 and/or retaining keys 42. Base 34 and spring 5 may be molded of a plastics material. In other embodiments base 34 and spring 5 are made in one piece of sheet metal. The spring 5 formed unitary with the lamp base 34 meets regulatory requirements and avoids a risk of dislodgement of a conventional separate piece-part metal spring which could cause an electrical short when the lamp is installed in the field. The lamp capsule 32 is suitably an H13-style lamp.
Type:
Grant
Filed:
September 14, 2020
Date of Patent:
May 4, 2021
Assignee:
OSRAM SYLVANIA Inc.
Inventors:
Jason Lessard, Blair Weiss, Richard Holland
Abstract: Various implementations disclosed herein includes a method for operating lighting fixtures in horticultural applications. The method may include receiving a user input of a desired irradiance for a first color channel of one or more lighting fixtures that irradiates a plant bed, in which each of the one or more lighting fixtures comprises at least one light emitting diode (LED) array, determining, for each of the one or more lighting fixtures, a PWM setting of the first color channel such that each of the one or more lighting fixtures irradiate the plant bed at the desired irradiance based on calibration data stored in each of the one or more lighting fixtures, and applying, to each of the one or more lighting fixtures, the determined PWM setting of the first color channel.
Type:
Grant
Filed:
August 26, 2019
Date of Patent:
May 4, 2021
Assignee:
Osram Sylvania Inc.
Inventors:
David Hamby, Richard Speer, John Selverian, Alan Sarkisian, Rodrigo Pereyra
Abstract: A method for producing a component and an optoelectronic component are disclosed. In an embodiment a method for producing a component includes providing an auxiliary carrier having a base body and a grid, providing a semiconductor body having an active zone for generating electromagnetic radiation, bonding the auxiliary carrier to the semiconductor body, wherein the grid is formed in the base body prior to the bonding and has a plurality of openings, and wherein after bonding, the base body is removed for exposing the grid and forming a converter layer by at least partially filling the openings of the grid, the converter layer for converting the electromagnetic radiation with respect to its peak wavelength.
Type:
Application
Filed:
July 29, 2019
Publication date:
April 29, 2021
Applicants:
OSRAM OLED GmbH, OSRAM OLED GmbH
Inventors:
Alexander Pfeuffer, Britta Göötz, Jens Müller
Abstract: A method for producing an optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment the method include A) providing at least two source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chip; B) providing a target substrate having a mounting plane, the mounting plane being configured for mounting the semiconductor chip; and C) transferring at least part of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips, within one type, maintain their relative position with respect to one another, so that each type of semiconductor chips arranged on the target substrate has a different height above the mounting plane, wherein the semiconductor chips are at least one of at least partially stacked one above the other or at least partially applied to at least one casting layer.
Type:
Grant
Filed:
March 29, 2018
Date of Patent:
April 27, 2021
Assignee:
OSRAM OLED GMBH
Inventors:
Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz
Abstract: A carrier for an optoelectronic component includes a main body, wherein the main body includes a first electrically conductive heating layer arrangement, a first solder layer for soldering an optoelectronic component to the main body is arranged on a first side of the main body, the first electrically conductive heating layer arrangement is electrically insulated from the first solder layer and thermally connected to the first solder layer, and the first heating layer arrangement has an exposed portion on which molten solder of the first solder layer can flow to reduce an electrical resistance of the first heating layer arrangement.
Type:
Grant
Filed:
December 14, 2016
Date of Patent:
April 27, 2021
Assignee:
OSRAM OLED GmbH
Inventors:
Christoph Walter, Roland Enzmann, Markus Horn, Jan Seidenfaden