Patents Assigned to OSRAM
  • Publication number: 20200136348
    Abstract: A semiconductor laser includes a contact carrier having electrical contact surfaces to electrically contact a semiconductor layer sequence, an electrical connecting line from a main side of the semiconductor layer sequence facing away from the contact carrier and a plurality of capacitors, wherein the connecting line is located on or in the semiconductor layer sequence, at least two of the capacitors are present, the capacitances of which differ by at least a factor of 50, the capacitor having a smaller capacitance is configured to supply the active zone with current immediately after a switch-on operation, and the capacitor having the larger capacitance is configured to a subsequent current supply, the capacitor having the smaller capacitance directly electrically connects to the active zone, and a resistor is arranged between the capacitor having the larger capacitance and the active zone, the resistor having a resistance of at least 100 ?.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 30, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Roland Heinrich ENZMANN, Andreas WOJCIK, Hubert HALBRITTER, Martin Rudolf BEHRINGER, Josip MARIC, Mariel Grace JAMA, Berthold HAHN, Christian MÜLLER, Isabel OTTO
  • Patent number: 10638568
    Abstract: A headlamp for the conversion of an original headlamp of a vehicle, comprising: an input for each light function provided by the headlamp, wherein the input is configured to connect to a line of the on-board network of a vehicle for the associated light function, an output for connecting to an on-board network of the vehicle, a module for simulating a load current for those light functions that require considerably less power in the headlamp than the corresponding light source in the original headlamp, at least one light source with an associated electronic operating device for each light function of the headlamp, and a controller for controlling-the modules for simulating a load current and for controlling the light sources with the associated electronic operating device. The module for simulating a load current for each light source comprises a series circuit arrangement of a resistor and a switch.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM BETEILIGUNGSVERWALTUNG GMBH
    Inventors: Peter Niedermeier, Marc Schwenkbeck
  • Patent number: 10637206
    Abstract: The invention relates to an assembly comprising an electric component. The component has an electric part, a control circuit, and a capacitor. At least two lead frames are provided which are embedded into a housing. The part, the control circuit, and the capacitor are arranged on the lead frames, and the control circuit is designed to charge the capacitor and to supply the part with current from the capacitor in a clocked manner. The component has two contacts, and the component is arranged on a support. The support has an electrically conductive layer and the two contacts are connected to the layer in an electrically conductive manner. At least one first part of one lead frame is arranged at a greater distance from the electrically conductive layer than the second lead frame.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Hubert Halbritter, Andreas Wojcik
  • Patent number: 10632655
    Abstract: A method of producing a carrier substrate for an optoelectronic semiconductor component includes: providing a leadframe including a first electrically conductive contact section and a second electrically conductive contact section, and injection molding a housing including a housing frame embedding the leadframe by an injection-molding material free of epoxy such that the leadframe embedded in the housing frame of the injection-molded housing forms a carrier substrate for an optoelectronic semiconductor component.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Stephan Eicher, Martin Brandl, Markus Boss
  • Patent number: 10637211
    Abstract: A light-emitting semiconductor chip (100) is provided, having a first semiconductor layer (1), which is at least part of an active layer provided for generating light and which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Christoph Eichler, Andre Somers, Bernhard Stojetz, Andreas Loeffler, Alfred Lell
  • Patent number: 10637005
    Abstract: A method of producing a component module includes providing a component holder having a curved upper side and a radiation-emitting bendable component, and bending and fastening the component to the upper side so that the component has a curved shape.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Erwin Lang, Thomas Wehlus, Arne Fleißner, Sebastian Wittmann
  • Patent number: 10636290
    Abstract: A device is disclosed for providing a communication interface for a solid-state luminaire. The disclosed device may be configured, for example, as a dongle to be electrically coupled with power lines between a driver and solid-state light source. The device may draw power from the power lines, while also adjusting and, if desired, monitoring current going to the light source. In some embodiments, the device splits current received from the driver into a first portion that is returned to the driver or consumed within the device and a second portion that is time-modulated and delivered to the light source. In some other embodiments, the device provides a time-varying impedance in series with the driver, reducing current received by the light source in a time-modulated manner. In either case, the device optionally may be configured to cause the light source to output a pulsing light signal encoded with data.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 28, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Christian Breuer, Bernhard Siessegger
  • Patent number: 10638578
    Abstract: A method of operating a semiconductor light source, wherein the semiconductor light source includes at least one first light source that generates blue light; at least one second light source that generates bluish-white light; at least one third light source that produces greenish-white light; at least one fourth light source that generates red light, wherein no further light sources are present, the light sources can be controlled independently of one another, the light sources are operated in a continuous wave mode and not by pulse width modulation, and the semiconductor light source is operated such that all in all white mixed light having a tunable correlated color temperature is generated, and each of the light sources is operated exclusively with at least 5% of an intended maximum current in the switched-on state of the semiconductor light source so that an undercurrent operation of the light sources is prevented.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: April 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Rainer Butendeich, Stefan Illek
  • Patent number: 10634380
    Abstract: Disclosed herein are embodiments of an occupancy monitoring system. The occupancy monitoring system includes a thermal sensor configured to monitor a gate (e.g., entry way) to a space. The thermal sensor includes a pixel array that generates a pixel value for each pixel in the pixel array, and the pixel value corresponds to a quantity of heat or thermal information detected by a pixel. The occupancy monitoring system acquires pixel values for the pixels of the pixel array. The occupancy monitoring system determines whether there is a change in occupancy of the space based on changes to a first region (or first pixel cluster) of the pixel array and a second region (or second pixel cluster) of the pixel array over time. The occupancy monitoring system may adjust lighting, temperature, and/or security systems for the space as the occupancy changes.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 28, 2020
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Marijan Kostrun, Anant Aggarwal, Richard C. Garner
  • Publication number: 20200127181
    Abstract: A radiation-emitting semiconductor device and a fabric are disclosed. In an embodiment, a radiation-emitting semiconductor device includes a semiconductor layer sequence having an active region configured to generate radiation and at least one carrier on which the semiconductor layer sequence is arranged, wherein the at least one carrier has at least one anchoring structure on a carrier underside facing away from the semiconductor layer sequence, wherein the at least one anchoring structure includes electrical contact points for making electrical contact with the semiconductor layer sequence, and wherein the at least one anchoring structure is configured to receive at least one thread for fastening the semiconductor device to a fabric and for electrical contacting the at least one thread.
    Type: Application
    Filed: April 18, 2018
    Publication date: April 23, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Rudolf Behringer, Alexander F. Pfeuffer, Andreas Plößl, Georg Bogner, Berthold Hahn
  • Patent number: 10629777
    Abstract: An optoelectronic semiconductor chip includes a semiconductor body including an n-conducting region, a p-conducting region and an active region between the n-conducting region and the p-conducting region; a first mirror containing a first metallic layer, and a p-metallization containing a second metallic layer, wherein during operation of the semiconductor chip, the first mirror is not at the same electrical potential as the p-conducting region, during operation of the semiconductor chip, the p-metallization is at the same electrical potential as the p-conducting region, and the first mirror has at least one opening through which the p-metallization is electrically conductively connected to the p-conducting region.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Alexander F. Pfeuffer
  • Patent number: 10629844
    Abstract: In various aspects, an organic optoelectronic component and method for producing an organic optoelectronic component are described. An organic optoelectronic component may include a first electrode, an organic functional layer structure above the first electrode, a second electrode above the organic functional layer structure, an adhesive layer structure, and a protective film. The adhesive layer structure may contain a first adhesive layer above the first adhesive layer, and a second adhesive layer above the first adhesive layer. The first adhesive layer may be cured. The second adhesive layer may be adherent and elastic. The protective film may be above the second adhesive layer. The protective film may contain at least one region that is at least partly separated in a lateral direction.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: April 21, 2020
    Assignee: Osram OLED GmbH
    Inventor: Simon Schicktanz
  • Patent number: 10630057
    Abstract: In an embodiment a laser include a semiconductor layer sequence having an active zone for generating radiation and an electrical contact web arranged on a top side of the semiconductor layer sequence, wherein the contact web is located on the top side only in an electrical contact region or is in electrical contact with the top side only in the contact region so that the active zone is supplied with current only in places during operation, wherein the contact web comprises a plurality of metal layers at least partially stacked one above the other, wherein at least one of the metal layers comprises a structuring so that the at least one metal layer only partially covers the contact region and has at least one opening or interruption, and wherein the structuring reduces stresses of the semiconductor layer sequence on account of different thermal expansion coefficients of the metal layers.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Bernhard Stojetz, Georg Brüderl
  • Patent number: 10629660
    Abstract: An organic electronic component and a method for making an organic electronic component are disclosed. In an embodiment the component includes an anode, an active layer arranged above the anode, an electron injection layer arranged above the active layer and a cathode arranged above the electron injection layer. The electron injection layer further comprises a first organic layer comprising a first organic matrix material, a second organic layer comprising a second organic matrix material and a metallic layer, wherein the first organic matrix material has a higher electron conductivity than the second organic matrix material.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Dominik Pentlehner, Andreas Rausch, Ulrich Niedermeier, Julia Desjardins
  • Patent number: 10629571
    Abstract: An optoelectronic semiconductor component is disclosed. In an embodiment a component includes a housing having a recess, a first semiconductor chip for generating light of a first color and a second semiconductor chip for generating light of a second color which is different from the first color, wherein, during operation, a mixed radiation including at least the light of the first color is emitted along a main emission direction, wherein the first semiconductor chip is arranged in a first plane and the second semiconductor chip is arranged in a second plane in the recess, the planes following one another along the main emission direction, wherein active zones of the first and second semiconductor chips are arranged side by side to one another, and wherein at least one electrical connection surface of the first semiconductor chip forms a part of a mounting surface of the semiconductor component.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GMBH
    Inventor: Siegfried Herrmann
  • Patent number: 10627091
    Abstract: Various embodiments may relate to a lighting system, including at least one lighting module which has a printed circuit board and at least one lighting means arranged on the printed circuit board, and at least one electrical component for operating the lighting means of the lighting module. The electrical component is electrically connected to the lighting module. The electrical component is directly fastened to the lighting module.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: April 21, 2020
    Assignee: OSRAM GMBH
    Inventors: Axel Gesell, Robert Kraus, Andreas Hammer
  • Patent number: 10629486
    Abstract: According to the present disclosure, a method for producing a plurality of semiconductor chips is provided with the following steps: a) providing a composite assembly, including a carrier, a semiconductor layer sequence and a functional layer; b) severing the functional layer by means of coherent radiation along a singulation pattern; c) forming separating trenches in the carrier along the singulation pattern; and d) applying a protective layer, which delimits the functional layer toward the separating trenches, on in each case at least one side surface of the semiconductor chips to be singulated. The singulated semiconductor chips each includes a part of the semiconductor layer sequence, of the carrier and of the functional layer.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Michael Huber, Lorenzo Zini
  • Patent number: 10629578
    Abstract: An arrangement includes a carrier; an optoelectronic component arranged on the carrier; and a material arranged on the carrier, wherein the carrier includes at least one structural element that hinders flow of the material in a flow direction, the structural element extends transversely to the flow direction, and the structural element has a rounding radius in a plane perpendicular to the transverse extent of the structural element less than 20 ?m.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Daniel Leisen, Markus Pindl, Simon Jerebic
  • Patent number: 10629781
    Abstract: A method for producing a component may include providing a composite including a semiconductor layer stack, a first connection layer and a second connection layer, wherein the first and second connection layers are arranged on the semiconductor layer stack, are assigned to different electrical polarities and are configured for the electrical contacting of the component to be produced, applying a molded body material on the composite for forming a molded body, such that in a plan view of the semiconductor layer stack the molded body covers the first connection layer and the second connection layer, forming a first cutout and a second cutout through the molded body for exposing the connection layers in places, and filling the first and second cutouts with an electrically conductive material for forming through contacts which are electrically conductively connected to the connection layers and extend through the molded body in the vertical direction.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Juergen Moosburger, Lutz Hoeppel
  • Patent number: 10629784
    Abstract: The invention relates to an optoelectronic component (100) comprising a semiconductor chip (1) for generating a primary beam in the blue spectral range, a conversion element (4) which is arranged in the beam path of the semiconductor chip (2) and is designed to generate a secondary beam from the primary beam, wherein the conversion element (4) comprises at least one first luminescent material (9) used as a conversion material, the first luminescent material (9) being (La1-xCax)3Si6(N1-yOy)11:Ce3+ with 0?x?1 and 0<y?1, wherein a total beam (G) emerging from the component (100) is white mixed light.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 21, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Philipp Pust, Martin Noemer