Abstract: A circuit and method of generating an internal chip clock signal for distribution throughout an integrated circuit in response to an external clock signal includes the steps of generating a minimum width internal clock signal if the width of the external clock signal is less than a predetermined minimum width, generating an internal clock signal having a width substantially equal to the width of the external clock signal if the width of the external clock signal is greater than a predetermined minimum width but less than a predetermined maximum width, and generating a maximum width internal clock signal if the width of the external clock signal is greater than a predetermined maximum width.
Abstract: A thin buffer layer of SiON is formed on the top surface of the floating gate, in order to protect the polysilicon surface from attack by atomic chlorine produced during the formation of the high temperature oxide of the ONO stack. The buffer layer can also be formed on other dielectric surfaces which are otherwise subject to adverse conditions in subsequent processing, such as the nitride layer in the ONO dielectric stack.
Abstract: In a nonvolatile memory array in which each cell (110) has two floating gates (160), for any two consecutive memory cells, one source/drain region (174) of one of the cells and one source/drain region of the other one of the cells are provided by a contiguous region of the appropriate conductivity type (e.g. N type) formed in a semiconductor substrate (120). Each such contiguous region provides source/drain regions to only two of the memory cells in that column. The bitlines (180) overlie the semiconductor substrate in which the source/drain regions are formed. The bitlines are connected to the source/drain regions.
Abstract: A method of fabricating a deep trench capacitor is provided. A substrate with a deep trench thereon is provided. A bottom electrode is formed at a bottom of the deep trench and a capacitor dielectric layer, a first conductive layer, a protective layer and a collar layer are sequentially formed on the surface of the deep trench. The protective layer and the collar oxide layer on the surface of the first conductive layer are removed, material is deposited into the deep trench to form a material layer. A portion of the material layer is removed to form a first opening. Thereafter, collar oxide layer and the protective layer not covered by the material layer is removed. A portion of the mask layer and the protective layer on the sidewall of the first opening is removed to form a second opening. After removing the material layer, a second conductive layer and a third conductive layer are sequentially formed in the deep trench.
Abstract: A photoresist exposure process is disclosed which produces features which are substantially smaller than the aperture dimension of the mask used to make the feature. The smaller feature size results from a double exposure of the photoresist, combined with a double baking process to create the features in the photoresist. The double baking process thins the layer of photoresist, prior to the second exposure, thereby improving the resolution of the mark created by the second exposure on the photoresist. The process also uses a binary bias mask through which the first exposure is made, which overlaps with the area of the second exposure, to allow a process tolerance for the realignment of the mask over the wafer for the second exposure.
Abstract: A memory device that includes a semiconductor substrate, and an array of memory cells, each cell being electrically isolated from adjacent cells and including an island formed from the substrate, the island having a top portion and at least one sidewall portion, and being spaced apart from other islands by a bottom surface on the substrate, a capacitor formed contiguous with the sidewall portion, and a transistor formed on the top portion of the island, the transistor including a gate oxide layer formed on a surface of the top portion, a gate formed on the gate oxide layer, and a first and a second diffused regions formed in the top portion, the first diffused region being spaced apart from the second diffused region.
Abstract: A method of manufacturing a semiconductor device includes providing a wafer substrate having a surface, forming a first nitride layer over the wafer substrate, providing a layer of photoresist over the first nitride layer, patterning and defining the photoresist layer, etching the first nitride layer unmasked by the photoresist to remove at least a portion of the first nitride layer to expose at least a portion of the substrate surface, removing the photoresist layer, and depositing a second nitride layer over the first nitride layer and the exposed substrate surface to form a nitride structure having a first thickness and a second thickness, wherein the first thickness includes a thickness of the first nitride layer.
Abstract: The present invention provides a method and system for calibration of writing to an optical medium. The method includes: sampling marks in a calibration area of the optical medium; and converting the sampled marks into a digital format utilizing an ADC, the ADC also utilized by a servo control. The present invention provides a controller with an integrated servo and recording processor which allows a single ADC to be used for converting sample marks used in calibrating the writing to an optical media. No separate subsystem for converting sample marks is thus necessary. Less components are required, reducing the cost of manufacturing the controller. With less components, the risk of component failure is reduced as well.
Abstract: A method for manufacturing a trench capacitor that includes providing a semiconductor substrate, forming a deep trench in the substrate, forming a thin sacrificial layer on a surface of the trench, and forming a hemispherical silicon grain layer over the thin sacrificial layer, wherein the sacrificial layer has a thickness to act as an etch stop during a subsequent step to remove at least a portion of the hemispherical silicon grain layer, and is electrically conductive.
Abstract: A thin buffer layer of SiON is formed on the top surface of the floating gate, in order to protect the polysilicon surface from attack by atomic chlorine produced during the formation of the high temperature oxide of the ONO stack. The buffer layer can also be formed on other dielectric surfaces which are otherwise subject to adverse conditions in subsequent processing, such as the nitride layer in the ONO dielectric stack.
Abstract: In a nonvolatile memory, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed simultaneously. In a nonvolatile memory, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness. Portions of the control gates (170) overlie the select gates.
Abstract: A method of etching nitride over oxide is provided for the formation of vertical profile nitride spacers with high uniformity while maintaining the integrity of underlying thin oxide layers. The method includes providing a first gas flow including a first fluorocarbon and a second fluorocarbon at a first ratio, applying a first quantity of power to the first gas flow to create a first plasma, etching a first portion of a silicon nitride layer with the first plasma, providing a second gas flow including the first fluorocarbon and the second fluorocarbon at a second ratio greater than the first ratio, applying a second quantity of power to the second gas flow to create a second plasma, and etching a second portion of the silicon nitride layer with the second plasma.
Abstract: In a nonvolatile memory, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed simultaneously. In a nonvolatile memory, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness. Portions of the control gates (170) overlie the select gates.
Abstract: A floating gate of a nonvolatile memory cell is formed from two conductive layers (410.1, 410.2). A dielectric (210) in substrate isolation regions and the first of the two conductive layers providing the floating gates (410.1) are formed so that the dielectric has an exposed sidewall. At least the top portion of the sidewall is exposed. Then some of the dielectric is removed from the exposed portions of the dielectric sidewalls to laterally recess the sidewalls. Then the second conductive layer (410.2) for the floating gates is formed. The recessed sidewalls of the dielectric allow the second conductive layer to expand laterally, thus increasing the capacitive coupling between the floating and control gates and improving the gate coupling ratio.
Abstract: Conductive material is deposited by ionized physical vapor deposition on an insulator, possibly to contact a conductive layer exposed by an opening in the insulator. At the beginning of the deposition, the wafer bias is low (possibly zero), to prevent the insulator re-sputtering by the ionized conductive material as this material is being deposited. The contact resistance is improved (reduced) as a result.
Abstract: A capacitor dielectric structure of a deep trench capacitor for a DRAM cell. A semiconductor silicon substrate is provided wit a deep trench. Silicon nitride deposition is used to form a silicon nitride layer on the sidewall and bottom of the deep trench. An oxynitride process with wet oxidation and N2O reactive gas is used to form an oxynitride layer on the silicon nitride layer. A post oxynitride growth annealing is performed on the oxynitride layer.
Abstract: The present invention provides a method and system for audio data retrieval from an optical media. The method includes reading a sector of audio data from the optical media, the sector comprising a sector data and a sector sub-code; collecting the sector sub-code; correcting any errors in the sector data in a fixed time period; calculating a time offset between a time for the collecting of the sector sub-code and the fixed time period; and matching the corrected sector data to the sector sub-code based on the calculated time offset. A method and system for retrieving audio data from an optical media has been disclosed. The present invention uses a fixed time period for the sector data error correction process. By using a fixed correction time, the sector data and the sector sub-code can be automatically matched based upon an offset calculated from the fixed correction time.
Type:
Grant
Filed:
April 4, 2000
Date of Patent:
December 7, 2004
Assignee:
ProMOS Technologies Inc.
Inventors:
(Paul) Phuc Thanh Tran, Thien-Phuc Nguyen Do, Tom Vu
Abstract: A dynamic random access memory (DRAM) structure and a fabricating process thereof are provided. In the fabricating process, a channel region is formed with a doped region having identical conductivity as the substrate in a section adjacent to an isolation structure. The doped region is formed in a self-aligned process by conducting a tilt implantation implanting ions into the substrate through the upper portion of the capacitor trench adjacent to the channel region after forming the trench but before the definition of the active region.
Abstract: A trench capacitor includes an electrode having a first conductive area formed in a trench provided in a substrate, and a second conductive area extending from a bottom of the trench, the second conductive area being electrically coupled to the first conductive area and spaced apart from the first conductive area; a storage node having a first conductive extension extending into a first dielectric space provided between the first conductive area and the second conductive area of the electrode, and a second conductive extension extending into a second dielectric space provided within the second conductive area of the electrode; and a dielectric layer electrically insulating the electrode from the storage node.
Abstract: An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip.