Abstract: In a differential output circuit, a second amplifier has a positive terminal connected to a second fixed potential and a negative terminal to a fifth switch at a first terminal. First and second switches are connected at a point connected to the fifth switch at a second terminal and to a first load. Third and fourth switches are connected at a point connected to the fifth switch at a third terminal and to a second load. The second terminal is connected to the first terminal when the second and third switches turn on. The third terminal is connected to the first terminal when the first and fourth switches turn on.
Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
Abstract: An IC card capable of reinforcing the prevention of the electrostatic damage without causing a rise in the cost of a semiconductor integrated circuit chip. The semiconductor integrated circuit chip (2) is mounted on a card substrate (1), and plural connection terminals (3) are exposed. The connection terminals are connected to predetermined external terminals (4) of the semiconductor integrated circuit chip, first overvoltage protection elements (7, 8, 9) connected to the external terminals are integrated in the semiconductor integrated circuit chip, and second overvoltage protection elements such as surface-mount type varistors (11) connected to the connection terminals are mounted on the card substrate. The varistors are variable resistor elements having a current tolerating ability greater than that of the first overvoltage protection elements.
Abstract: The present invention relates to a semiconductor device in which electrodes formed on a semiconductor chip and electrodes formed on a wiring board are electrically connected via projecting elastic electrodes, and further relates to a mounting method of reducing a pressure applied to electrodes formed on a substrate or underlying wirings when a semiconductor chip and a wiring board are bonded.
Abstract: Disclosed herewith is a semiconductor processing system such as a card type electronic device, which can easily cope with an error caused by power shutoff that occurs when the card is ejected. The semiconductor processing system is provided with an interface control circuit and a processing circuit and receives operation power from an external device such as a card slot when it is inserted therein. According to a first aspect of the present invention for coping with an error caused by power shutoff that occurs when the card is ejected, the interface control circuit, when the card is ejected from the card slot, detects a potential change to occur at a first external terminal to be disconnected from a predetermined terminal of the card slot before the power supply from the card slot is shut off, then instructs the processing circuit that is active to perform an ending processing. The semiconductor processing system can end the processing by itself before the power supply stops completely.
Abstract: There are provided a transmission/reception switching circuit which is small in insertion loss and harmonic distortion and allows an increase in the output power of a power amplifier and an electronic component for communication on which the transmission/reception switching circuit is mounted. As an element composing a transmission/reception switching circuit in a wireless communication system, series-connected FETs or a multi-gate FET are used in place of a diode. Gate resistors connected between the individual gate terminals and a control terminal are designed to have resistance values which become progressively smaller from the gate to which a highest voltage is applied toward the gate to which a lowest voltage is applied.
Abstract: A semiconductor device capable of achieving downsizing without reducing the power supply efficiency and capable of reducing switching noises and a memory card using the same are disclosed. The device comprises a plurality of stages of voltage booster circuits for potentially raising a power supply voltage up to a final output voltage, a voltage control unit for controlling an output voltage at a nearby location of the final stage, and one or more internal elements to which the final output voltage is supplied. A primary voltage booster circuit at the first stage includes an inductance element, a switching element, a diode and a driver circuit. At a metal core part of the inductance element, a metal wiring line is used, which was formed by use of a fabrication process of semiconductor integrated circuits, while employing for its core part an inter-wiring layer dielectric film that was formed using the fabrication process.
Abstract: A semiconductor integrated circuit device for communication is provided with a PLL circuit or the like formed therein, the PLL circuit which is capable of realizing the compensation of fluctuation due to temperature change, the inhibition of increase in the chip area and the ensurement of the performance margin, and which controls a VCO having multiple oscillation frequency bands. In the case where automatic calibration is performed by switching a switch to a side of a DC voltage source in the PLL circuit using a VCO having multiple oscillation bands, a tuning voltage (Vtune) of an RFVCO is fixed to a voltage value of a DC voltage source. However, since a temperature characteristic of canceling a VCO oscillation frequency is given to the DC voltage source, it is possible to minimize the influence on the band selection when a calibration table comes to no optimum one.
Type:
Grant
Filed:
July 25, 2006
Date of Patent:
September 11, 2007
Assignees:
Renesas Technology Corp., TTP Com Limited
Abstract: An information processing device having low power consumption without affecting interruption request response speed. The device specifies a waiting time until execution of a given event and makes a system call and includes a first timer circuit for a first cycle; a second timer circuit for a second cycle shorter than the first cycle; a timeout supervisor which stores the waiting time; and a first cycle supervisor which stores waiting time until the next interruption request. The timeout supervisor stores the time calculated by subtraction of the waiting time stored in the first cycle supervisor from that in the timeout supervisor upon an interruption request from the first timer; and if the waiting time stored in the timeout supervisor is shorter than the first cycle, the second cycle time is subtracted from the time stored in the timeout supervisor upon an interruption request from the second timer circuit.
Abstract: A technology capable of improving the yield by the trimming of internal properties of a semiconductor device is provided. A semiconductor device is provided with an internal voltage step-down circuit and an internal voltage step-up circuit whose property values (internal voltage and others) are variable, a fuse circuit unit, a JTAG function unit 304 which inputs and retains signals from outside, a control circuit which perform logical operation based on an output signal of the fuse circuit unit and an output signal of the JTAG function unit, and the property values of the internal voltage step-down circuit and the internal voltage step-up circuit are controlled based on a result of the logical operation by the control circuit.
Abstract: The present fabrication method includes the steps of: providing a nitride film in a main surface of a semiconductor substrate; providing an upper trench, with the nitride film used as a mask; filling the upper trench with an oxide film introduced therein; removing the oxide film to expose at least a portion of a bottom of the upper trench and allowing a remainder of the oxide film to serve as a sidewall; providing a lower trench in a bottom of the upper trench, with the sidewall used as a mask; and with the upper trench having the sidewall remaining therein, providing an oxide film in the upper trench and the lower trench. This can provide a semiconductor device fabrication method and a semiconductor device preventing a contact from penetrating the device in an interconnection process.
Type:
Grant
Filed:
January 12, 2005
Date of Patent:
September 11, 2007
Assignee:
Renesas Technology Corp.
Inventors:
Jun Sumino, Satoshi Shimizu, Tsuyoshi Sugihara
Abstract: The present invention provides a band gap type reference voltage generating circuit and a semiconductor integrated circuit having the same, capable of generating a reference voltage of about 1.2V or less whose temperature dependency is low, and realizing reduced offset voltage dependency of a differential amplifier. A band gap part has: a first resistor and a first bipolar transistor connected in series between power supply voltage terminals; a second resistor, a second bipolar transistor, and a third resistor connected in series between the power supply voltage terminals; and a differential amplifier that receives voltages generated by the first and second resistors, and an output of the differential amplifier is applied to the bases of the two transistors.
Abstract: A method for manufacturing a semiconductor integrated circuit device including a first field effect transistor having a gate insulating film formed over a first element forming region of a main surface of a semiconductor substrate; and a second field effect transistor having a gate insulating film formed over a second element forming region of the main surface of the semiconductor substrate and made thinner than the gate insulating film of the first field effect transistor.
Abstract: A nonvolatile semiconductor memory device of a split gate structure having a gate of low resistance suitable to the arrangement of a memory cell array is provided. When being formed of a side wall spacer, a memory gate is formed of polycrystal silicon and then replaced with nickel silicide. Thus, its resistance can be lowered with no effect on the silicidation to the selection gate or the diffusion layer.
Abstract: A semiconductor device comprises a BGA substrate having one principal plane furnished with a large number of solder balls, the solder balls constituting a ball grid array; a semiconductor chip mounted on another principal plane of the BGA substrate, the semiconductor chip being electrically connected to the BGA substrate by metal wires; and chip capacitors mounted on the semiconductor chip to reduce power source noise.
Abstract: A P+ base drawing diffusion region is formed on a substrate having an SOI structure. N+ emitter diffusion regions are formed on both sides of the P+ base drawing diffusion region through isolation insulating films interposed therebetween. A P type SOI layer, which serves as a base diffusion region, is formed so as to surround the N+ emitter diffusion regions, and conductive layers are formed thereon. Further, an N+ collector diffusion region is formed so as to surround the conductive layers.
Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).
Type:
Application
Filed:
May 1, 2007
Publication date:
September 6, 2007
Applicant:
Renesas Technology Corp.
Inventors:
Kazunobu OTA, Hirokazu Sayama, Hidekazu Oda
Abstract: A semiconductor integrated circuit device provided with a pipeline A-D conversion circuit in which the enhancement of accuracy and the reduction of power consumption are accomplished is provided. The pipeline A-D conversion circuit is connected in series with an input terminal to which an analog signal to be converted is inputted and has a plurality of stages. The stages other than the first stage connected with the input terminal through at least one stage, including the first stage that receives input signals from the input terminal are constructed as follows: each of the other stages is comprised of two or more sample and hold circuits and an amplifier connected in common with the two or more sample and hold circuits. The two or more sample and hold circuits are caused to perform interleave operation.
Abstract: To improve the reliability and yield of a thin-type semiconductor device as used for a stack-type flash memory, the semiconductor device is manufactured by upheaving each of semiconductor chips (semiconductor devices) obtained by dicing a semiconductor wafer on an adhesive sheet from a backside via the adhesive sheet using an upthrow jig to which ultrasonic vibration is applied so as not to break through the adhesive sheet, and by picking up each semiconductor chip.
Abstract: A memory cell includes first and second data holding portions for holding stored data and its inverted data. First and second p channel TFT compensate for charges leaked from first and second capacitors, respectively. A first (second) access transistor has first and second gate electrodes connected to a first (second) word line and to a second (first) node, respectively. The first (second) access transistor discharges the charges leaked from a power supply node via the first (second) p channel TFT in the OFF state in the leakage mode where the first (second) word line is inactivated and the second (first) node is at an H level.