Patents Assigned to Semtech Corporation
-
Patent number: 9679785Abstract: A semiconductor device has a semiconductor wafer. The semiconductor wafer includes a plurality of semiconductor die. An insulating layer is formed over an active surface of the semiconductor die. A trench is formed in a non-active area of the semiconductor wafer between the semiconductor die. The trench extends partially through the semiconductor wafer. A carrier with adhesive layer is provided. The semiconductor die are disposed over the adhesive layer and carrier simultaneously as a single unit. A backgrinding operation is performed to remove a portion of the semiconductor wafer and expose the trench. The adhesive layer holds the semiconductor die in place during the backgrinding operation. An encapsulant is deposited over the semiconductor die and into the trench. The carrier and adhesive layer are removed. The encapsulated semiconductor die are cleaned and singulated into individual semiconductor devices. The electrical performance and functionality of the semiconductor devices are tested.Type: GrantFiled: July 27, 2015Date of Patent: June 13, 2017Assignee: Semtech CorporationInventor: Satyamoorthi Chinnusamy
-
Publication number: 20170147145Abstract: A mobile device has a proximity sensor. A compensation value of the proximity sensor is determined. The compensation value is compared to a reference compensation value to determine validity of the compensation value. A capacitance of the proximity sensor is measured. A value of the capacitance of the proximity sensor is adjusted based on the compensation value. A coefficient defining a relationship between a capacitance of the proximity sensor and a temperature of the mobile device is calculated. A temperature sensor is coupled to the proximity sensor. The temperature of the mobile device is measured. A value of the capacitance of the proximity sensor is adjusted based on the coefficient and the temperature of the mobile device. The adjusted capacitance value is compared to a threshold capacitance value to determine proximity of an object to the mobile device. A radio frequency signal is adjusted by detecting proximity.Type: ApplicationFiled: January 10, 2017Publication date: May 25, 2017Applicant: Semtech CorporationInventors: Chaouki Rouaissia, Jerald G. Ott, III
-
Patent number: 9654070Abstract: An automatic gain controller comprises an amplifier including a variable gain. A resonant low-pass filter includes an input coupled to an output of the amplifier. The resonant low-pass filter is a second order low-pass filter. The second order low-pass filter includes a Sallen-Key topology. The Sallen-Key topology comprises a quality factor between 1.4 and 1.6. A threshold detection circuit includes an input coupled to an output of the second order low-pass filter to compare an output signal of the second order low-pass filter to a threshold and an output of the threshold detection circuit coupled to control the variable gain of the amplifier. A state machine is coupled between the output of the threshold detection circuit and the amplifier. The state machine is configured to transition based on a current state of the state machine. The resonant low-pass filter exhibits overshoot to trigger a hysteresis of the threshold detection circuit.Type: GrantFiled: May 22, 2015Date of Patent: May 16, 2017Assignee: Semtech CorporationInventors: Ryan P. MacDonald, Matthew G. Hagman
-
Publication number: 20170133323Abstract: A semiconductor device has a first substrate. A conductive layer is formed over the first substrate. A first cavity is formed through the first substrate and extending to the conductive layer. A first semiconductor die including a plurality of first interconnect structures is disposed in the first cavity. A second substrate is disposed over the first substrate. A second cavity is formed through second substrate. A second semiconductor die including a plurality of second interconnect structures is disposed in the second cavity. A discrete device or third semiconductor die is disposed over the second semiconductor die. A plurality of third interconnect structures is formed between the second substrate and discrete device or third semiconductor die. The first, second, and third interconnect structures are reflowed simultaneously. An encapsulant is deposited over and around the first semiconductor die, the second semiconductor die, and the discrete device or third semiconductor die.Type: ApplicationFiled: January 25, 2017Publication date: May 11, 2017Applicant: Semtech CorporationInventors: Kok Khoon Ho, Satyamoorthi Chinnusamy
-
Patent number: 9647718Abstract: A wireless communication method between a plurality of end-points by a plurality of base stations, based on frames that have a CSS-modulated preamble followed by a data body modulated at a narrower bandwidth, either by CSS or by a UNB modulation. The system permit to avoid or mitigate collision between packets and to increase the network capacity, maintaining the simplicity of detection inherent of CSS modulation.Type: GrantFiled: September 9, 2015Date of Patent: May 9, 2017Assignee: Semtech CorporationInventor: Olivier Bernard André Seller
-
Semiconductor Device and Method of Forming DCALGA Package Using Semiconductor Die with Micro Pillars
Publication number: 20170125375Abstract: A semiconductor device has a first semiconductor die disposed over a substrate. A plurality of composite interconnect structures are formed over the semiconductor die. The composite interconnect structures have a non-fusible conductive pillar and a fusible layer formed over the non-fusible conductive pillar. The fusible layer is reflowed to connect the first semiconductor die to a conductive layer of the substrate. The non-fusible conductive pillar does not melt during reflow eliminating a need to form a solder resist over the substrate. An encapsulant is deposited around the first semiconductor die and composite interconnect structures. The encapsulant flows between the active surface of the first semiconductor die and the substrate. A second semiconductor die is disposed over the substrate adjacent to the first semiconductor die. A heat spreader is disposed over the first semiconductor die. A portion of the encapsulant is removed to expose the heat spreader.Type: ApplicationFiled: October 29, 2015Publication date: May 4, 2017Applicant: Semtech CorporationInventors: Satyamoorthi Chinnusamy, Weng Hing Tan, Andrew Pan, Kok Khoon Ho -
Patent number: 9628594Abstract: A mobile device includes a conductive element and a ground node. The conductive element is configured to be detected by a proximity sensor. A switch is coupled between the conductive element and ground node. The conductive element is coupled to the ground node by closing the switch. A first memory element is configured to control the switch. The first memory element includes a register bit coupled to a control terminal of the switch. A data output is configured to control the switch. A FIFO is configured to provide data to the data output. The first memory element includes a FIFO. A capacitive touch controller is configured to measure a capacitance of the conductive element. A digital processing unit is configured to convert the capacitance of the conductive element to a bit of data. A second memory element is configured to store the bit of data.Type: GrantFiled: October 31, 2014Date of Patent: April 18, 2017Assignee: Semtech CorporationInventor: Chaouki Rouaissia
-
Publication number: 20170097481Abstract: A novel, hybrid optical fibre stub device comprises a first ferrule transparent to UV light and a second ferrule including a conventional material. An optical fibre is disposed through the first ferrule and second ferrule. The input and output faces of the optical fibre are prepared suitable for optical coupling. A photonic device is coupled to the first optical fibre surface. A UV curable epoxy is disposed between the photonic device and the first optical fibre surface. The UV curable epoxy includes an index of refraction between an index of refraction of the first optical fibre and an index of refraction of the photonic device. A second optical fibre is coupled to the first optical fibre.Type: ApplicationFiled: December 14, 2016Publication date: April 6, 2017Applicant: Semtech CorporationInventors: Christopher A. Park, Nayla El Dahdah
-
Patent number: 9601461Abstract: A semiconductor device has a first substrate. A conductive layer is formed over the first substrate. A first cavity is formed through the first substrate and extending to the conductive layer. A first semiconductor die including a plurality of first interconnect structures is disposed in the first cavity. A second substrate is disposed over the first substrate. A second cavity is formed through second substrate. A second semiconductor die including a plurality of second interconnect structures is disposed in the second cavity. A discrete device or third semiconductor die is disposed over the second semiconductor die. A plurality of third interconnect structures is formed between the second substrate and discrete device or third semiconductor die. The first, second, and third interconnect structures are reflowed simultaneously. An encapsulant is deposited over and around the first semiconductor die, the second semiconductor die, and the discrete device or third semiconductor die.Type: GrantFiled: August 12, 2015Date of Patent: March 21, 2017Assignee: Semtech CorporationInventors: Kok Khoon Ho, Satyamoorthi Chinnusamy
-
Patent number: 9601400Abstract: A high temperature, non-cavity package for non-axial electronics is designed using a glass ceramic compound with that is capable of being assembled and operating continuously at temperatures greater that 300-400° C. Metal brazes, such as silver, silver colloid or copper, are used to connect the semiconductor die, lead frame and connectors. The components are also thermally matched such that the packages can be assembled and operating continuously at high temperatures and withstand extreme temperature variations without the bonds failing or the package cracking due to a thermal mismatch.Type: GrantFiled: August 14, 2015Date of Patent: March 21, 2017Assignee: Semtech CorporationInventors: Victor Hugo Cruz, David Francis Courtney
-
Patent number: 9582111Abstract: A mobile device has a proximity sensor. A compensation value of the proximity sensor is determined. The compensation value is compared to a reference compensation value to determine validity of the compensation value. A capacitance of the proximity sensor is measured. A value of the capacitance of the proximity sensor is adjusted based on the compensation value. A coefficient defining a relationship between a capacitance of the proximity sensor and a temperature of the mobile device is calculated. A temperature sensor is coupled to the proximity sensor. The temperature of the mobile device is measured. A value of the capacitance of the proximity sensor is adjusted based on the coefficient and the temperature of the mobile device. The adjusted capacitance value is compared to a threshold capacitance value to determine proximity of an object to the mobile device. A radio frequency signal is adjusted by detecting proximity.Type: GrantFiled: October 31, 2014Date of Patent: February 28, 2017Assignee: Semtech CorporationInventors: Chaouki Rouaissia, Jerald G. Ott, III
-
Patent number: 9577702Abstract: A system and a method for time synchronization on a wireless network, based on the exchange of Chirp Spread Spectrum information. Time signals are broadcast from a master (40) to a plurality of slave devices (101, 102, 103). The modulation used includes a compensation of offsets in the master's system clock by symbol-wide frequency shifts that is particularly precise, fine and simple to implement. The system and method of the invention are particularly suitable for synchronizing a telecommunication cell network.Type: GrantFiled: September 9, 2015Date of Patent: February 21, 2017Assignee: Semtech CorporationInventor: Olivier Bernard Andre Seller
-
Patent number: 9577648Abstract: A clock synchronization circuit has a clock sync detector. A first variable delay circuit is coupled to a first input of the clock sync detector. A controller is coupled to a digital output of the clock sync detector and a control input of the first variable delay circuit. A first clock signal is coupled to the first variable delay circuit. A second clock signal is coupled to a second input of the clock sync detector. The clock sync detector includes a first flip-flop and a first delay element coupled between the first variable delay circuit and a data input of the first flip-flop. A second variable delay circuit is coupled to a second input of the clock sync detector. A multiplexer is coupled between the first variable delay circuit and the first input of the clock sync detector. An offset compensation calibrates the clock sync detector.Type: GrantFiled: December 31, 2014Date of Patent: February 21, 2017Assignee: Semtech CorporationInventors: Krishna Shivaram, Eric Vandel
-
Patent number: 9574907Abstract: A semiconductor device measures a state of a MEMS as a first voltage variation at a sensing node. The state of the MEMS includes a capacitance. A first capacitor is coupled between the sensing node and an input of an integrator for transferring the first voltage variation to a second node as a first signal. A second voltage variation is routed through a second capacitor to the second node as a second signal. The integrator integrates the first signal and second signal to provide an integrated signal. An ADC has an input coupled to an output of the integrator and converts the integrated signal to a digital signal representative of the capacitance of the MEMS. A DAC has an input coupled to the output of the ADC. A second capacitor is coupled between an output of the DAC and the sensing node.Type: GrantFiled: January 21, 2014Date of Patent: February 21, 2017Assignee: Semtech CorporationInventors: Michel Chevroulet, Olivier Nys
-
Patent number: 9557492Abstract: A novel, hybrid optical fiber stub device comprises a first ferrule transparent to UV light and a second ferrule including a conventional material. An optical fiber is disposed through the first ferrule and second ferrule. The input and output faces of the optical fiber are prepared suitable for optical coupling. A photonic device is coupled to the first optical fiber surface. A UV curable epoxy is disposed between the photonic device and the first optical fiber surface. The UV curable epoxy includes an index of refraction between an index of refraction of the first optical fiber and an index of refraction of the photonic device. A second optical fiber is coupled to the first optical fiber.Type: GrantFiled: July 11, 2014Date of Patent: January 31, 2017Assignee: Semtech CorporationInventors: Christopher A. Park, Nayla El Dahdah
-
Patent number: 9542050Abstract: A proximity sensor includes a capacitive touch controller. A first shielding area is coupled to a first shield terminal of the capacitive touch controller. A second shield area is coupled to a second shield terminal of the capacitive touch controller. A first sensing element is disposed adjacent to the first shielding area. The first sensing element is coupled to a first sensing terminal of the capacitive touch controller. A second sensing element is disposed adjacent to the second shielding area. The second sensing element is coupled to a second sensing terminal of the capacitive touch controller. The capacitive touch controller is configured to associate the first sensing element with the first shielding area. A self-capacitance of the first sensing element is measured while the second shielding area is inactive. The self-capacitance of the first sensing element is measured at a first frequency.Type: GrantFiled: December 4, 2014Date of Patent: January 10, 2017Assignee: Semtech CorporationInventor: Pascal Monney
-
Patent number: 9525454Abstract: A method of control of a plurality of end-points by a plurality of base stations, comprises issuing a frame by at least one end-point and sending the frame to at least one base station, sending a response frame from the base station to the end-point upon receiving the frame, the response frame comprising a plurality of downchirps, at least two sequences, each comprising a positive acknowledge and an increase rate and a positive acknowledgement and a decrease rate, and additional control sequences.Type: GrantFiled: September 9, 2015Date of Patent: December 20, 2016Assignee: Semtech CorporationInventor: Olivier Bernard Andre Seller
-
Patent number: 9389252Abstract: A sampling circuitry for a plurality of electrodes the circuitry comprising a plurality of charge amplifiers and a plurality of modulators, wherein each charge amplifier and each modulator, comprised in the plurality of charge amplifiers and the plurality of modulators, respectively, corresponds to an electrode of the plurality of electrodes, wherein each modulator is capable of generating a residue signal and a rough code corresponding to each sampled electrode of the plurality of electrodes, a multiplexer capable of receiving a plurality of residue signals generated by the plurality of modulators, a residue analog to digital converter capable of receiving a multiplexed residue signal from the multiplexer and outputting a digitized multiplexed residue signal, and a digital summation circuitry capable of receiving the digitized multiplexed residue signal and a plurality of rough codes, comprising each rough code corresponding to each sample electrode, and outputting a plurality of output codes.Type: GrantFiled: June 30, 2015Date of Patent: July 12, 2016Assignee: Semtech CorporationInventors: Olivier Nys, Pascal Monney
-
Patent number: 9379103Abstract: A charge pump circuit includes a substrate and first well region formed in the substrate. A first transistor includes first and second conduction regions disposed in the first well region. A second well region is formed in the substrate. A third well region is formed within the second well region. A second transistor includes first and second conduction regions disposed in the third well region. The second well region and third well region are coupled to a common terminal. The common terminal receives a local potential and the first well region and second well region are commonly maintained at the local potential. The first transistor and second transistor operate within the charge pump cell. A plurality of charge pump cells can be cascaded together with an output of a first charge pump cell coupled to an input of a second charge pump cell.Type: GrantFiled: September 13, 2013Date of Patent: June 28, 2016Assignee: Semtech CorporationInventors: Daniel Aebischer, Michel Chevroulet
-
Publication number: 20160162068Abstract: A proximity sensor includes a capacitive touch controller. A first shielding area is coupled to a first shield terminal of the capacitive touch controller. A second shield area is coupled to a second shield terminal of the capacitive touch controller. A first sensing element is disposed adjacent to the first shielding area. The first sensing element is coupled to a first sensing terminal of the capacitive touch controller. A second sensing element is disposed adjacent to the second shielding area. The second sensing element is coupled to a second sensing terminal of the capacitive touch controller. The capacitive touch controller is configured to associate the first sensing element with the first shielding area. A self-capacitance of the first sensing element is measured while the second shielding area is inactive. The self-capacitance of the first sensing element is measured at a first frequency.Type: ApplicationFiled: December 4, 2014Publication date: June 9, 2016Applicant: Semtech CorporationInventor: Pascal Monney