Patents Assigned to Silanna UV Technologies Pte Ltd
  • Publication number: 20220005973
    Abstract: Resonant optical cavity light emitting devices are disclosed, where the device includes a substrate, a first spacer region, a light emitting region, a second spacer region, and a reflector. The light emitting region is configured to emit a target emission deep ultraviolet wavelength and is positioned at a separation distance from the reflector. The reflector may be a distributed Bragg reflector. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·?/n. K is a constant ranging from 0.25 to 10, ? is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20210351321
    Abstract: An optoelectronic semiconductor light emitting device configured to emit light having a wavelength in the range from about 150 nm to about 425 nm is disclosed. In embodiments, the device comprises a substrate having at least one epitaxial semiconductor layer disposed thereon, wherein each of the one or more epitaxial semiconductor layers comprises a metal oxide. Also disclosed is an optoelectronic semiconductor device for generating light of a predetermined wavelength comprising a substrate and an optical emission region. The optical emission region has an optical emission region band structure configured for generating light of the predetermined wavelength and comprises one or more epitaxial metal oxide layers supported by the substrate.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 11, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20210343896
    Abstract: In some embodiments, a light emitting structure comprises a layered semiconductor stack comprising a first set of doped layers, a second layer, a light emitting layer positioned between the first set of doped layers and the second layer, and an electrical contact to the first set of doped layers. The first set of doped layers can comprise a first sub-layer, a second sub-layer, and a third sub-layer, where the third sub-layer is adjacent to the light emitting layer. The electrical contact to the first set of doped layers can be made to the second sub-layer. The first, second and third sub-layers can be doped n-type, and an electrical conductivity of the second sub-layer can be higher than an electrical conductivity of the first and third sub-layers. In some cases, the second sub-layer can absorb more light emitted from the light emitting layer than the first or third sub-layers.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 4, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventors: Johnny Cai Tang, Chun To Lee, Guilherme Tosi, Christopher Flynn, Liam Anderson, Timothy William Bray
  • Patent number: 11158994
    Abstract: A light emitting device includes a substrate, a buffer layer, a first active layer, and a plurality of mesa regions. A portion of the first active layer includes a first electrical polarity. The plurality of mesa regions includes at least a portion of the first active layer, a light emitting region on the portion of the first active layer, and a second active layer on the light emitting region. A portion of the second active layer includes a second electrical polarity. The light emitting region is configured to emit light which has a target wavelength between 200 nm to 300 nm. A thickness of the light emitting region is a multiple of the target wavelength, and a dimension of the light emitting region parallel to the substrate is smaller than 10 times the target wavelength, such that the emitted light is confined to fewer than 10 transverse modes.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: October 26, 2021
    Assignee: Silanna UV Technologies Pte Ltd
    Inventors: Johnny Cai Tang, Petar Atanackovic
  • Patent number: 11127882
    Abstract: Resonant optical cavity light emitting devices are disclosed, where the device includes an opaque substrate, a first reflective layer, a first spacer region, a light emitting region, a second spacer region, and a second reflective layer. The light emitting region is configured to emit a target emission deep ultraviolet wavelength and is positioned at a separation distance from the reflector. The second reflective layer may have a metal composition comprising elemental aluminum and a thickness less than 15 nm. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·?/n. K is a constant ranging from 0.25 to 10, ? is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: September 21, 2021
    Assignee: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Patent number: 11114585
    Abstract: Semiconductor structures and methods for forming those semiconductor structures are disclosed. For example, a semiconductor structure with a p-type superlattice region, an i-type superlattice region, and an n-type superlattice region is disclosed. The semiconductor structure can have a polar crystal structure with a growth axis that is substantially parallel to a spontaneous polarization axis of the polar crystal structure. In some cases, there are no abrupt changes in polarisation at interfaces between each region. At least one of the p-type superlattice region, the i-type superlattice region and the n-type superlattice region can comprise a plurality of unit cells exhibiting a monotonic change in composition from a wider band gap (WBG) material to a narrower band gap (NBG) material or from a NBG material to a WBG material along the growth axis to induce p-type or n-type conductivity.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 7, 2021
    Assignee: Silanna UV Technologies Pte Ltd
    Inventors: Petar Atanackovic, Matthew Godfrey
  • Publication number: 20210226082
    Abstract: A semiconductor structure can comprise a plurality of first semiconductor layers comprising wide bandgap semiconductor layers, a narrow bandgap semiconductor layer, and a chirp layer between the plurality of first semiconductor layers and the narrow bandgap semiconductor layer. The values of overlap integrals between different electron wavefunctions in a conduction band of the chirp layer can be less than 0.05 for intersubband transition energies greater than 1.0 eV, and/or the values of overlaps between electron wavefunctions and barrier centers in a conduction band of the chirp layer can be less than 0.3 nm?1, when the structure is biased at an operating potential. The chirp layer can comprise a short-period superlattice with alternating wide bandgap barrier layers and narrow bandgap well layers, wherein the thickness of the barrier layers, or the well layers, or the thickness of both the barrier and well layers changes throughout the chirp layer.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventors: Norbert Krause, Guilherme Tosi
  • Publication number: 20210143298
    Abstract: In some embodiments, a semiconductor structure comprises a semiconductor layer, a metal layer, and a contact layer adjacent to the metal layer, and between the semiconductor layer and the metal layer. The contact layer can comprise one or more piezoelectric materials comprising spontaneous piezoelectric polarization that depends on material composition and/or strain, and a region comprising a gradient in materials composition and/or strain adjacent to the metal layer. In some embodiments, a light emitting diode (LED) device comprises an n-doped short period superlattice (SPSL) layer, an intrinsically doped AlN/GaN SPSL layer adjacent to the n-doped SPSL layer, a metal layer, and an ohmic-chirp layer between the metal layer and the intrinsically doped AlN/GaN SPSL layer.
    Type: Application
    Filed: December 17, 2020
    Publication date: May 13, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventors: Guilherme Tosi, Norbert Krause
  • Patent number: 10978611
    Abstract: A semiconductor structure can comprise a plurality of first semiconductor layers comprising wide bandgap semiconductor layers, a narrow bandgap semiconductor layer, and a chirp layer between the plurality of first semiconductor layers and the narrow bandgap semiconductor layer. The values of overlap integrals between different electron wavefunctions in a conduction band of the chirp layer can be less than 0.05 for intersubband transition energies greater than 1.0 eV, and/or the values of overlaps between electron wavefunctions and barrier centers in a conduction band of the chirp layer can be less than 0.3 nm?1, when the structure is biased at an operating potential. The chirp layer can comprise a short-period superlattice with alternating wide bandgap barrier layers and narrow bandgap well layers, wherein the thickness of the barrier layers, or the well layers, or the thickness of both the barrier and well layers changes throughout the chirp layer.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 13, 2021
    Assignee: Silanna UV Technologies Pte Ltd
    Inventors: Norbert Krause, Guilherme Tosi
  • Patent number: 10964537
    Abstract: Systems and methods for forming semiconductor layers, including oxide-based layers, are disclosed in which a material deposition system has a rotation mechanism that rotates a substrate around a center axis of a substrate deposition plane of the substrate. A material source that supplies a material to the substrate has i) an exit aperture with an exit aperture plane and ii) a predetermined material ejection spatial distribution from the exit aperture plane. The exit aperture is positioned at an orthogonal distance, a lateral distance, and a tilt angle relative to the center axis of the substrate. The system can be configured for either i) minimum values for the orthogonal distance and the lateral distance to achieve a desired layer deposition uniformity using a set tilt angle, or ii) the tilt angle to achieve the desired layer deposition uniformity using a set orthogonal distance and a set lateral distance.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: March 30, 2021
    Assignee: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20210074541
    Abstract: Systems and methods for forming semiconductor layers, including oxide-based layers, are disclosed in which a material deposition system has a rotation mechanism that rotates a substrate around a center axis of a substrate deposition plane of the substrate. A material source that supplies a material to the substrate has i) an exit aperture with an exit aperture plane and ii) a predetermined material ejection spatial distribution from the exit aperture plane. The exit aperture is positioned at an orthogonal distance, a lateral distance, and a tilt angle relative to the center axis of the substrate. The system can be configured for either i) minimum values for the orthogonal distance and the lateral distance to achieve a desired layer deposition uniformity using a set tilt angle, or ii) the tilt angle to achieve the desired layer deposition uniformity using a set orthogonal distance and a set lateral distance.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20210074542
    Abstract: Systems and methods for forming semiconductor layers, including oxide-based layers, are disclosed in which a material deposition system has a rotation mechanism that rotates a substrate around a center axis of a substrate deposition plane of the substrate. A material source that supplies a material to the substrate has i) an exit aperture with an exit aperture plane and ii) a predetermined material ejection spatial distribution from the exit aperture plane. The exit aperture is positioned at an orthogonal distance, a lateral distance, and a tilt angle relative to the center axis of the substrate. The system can be configured for either i) minimum values for the orthogonal distance and the lateral distance to achieve a desired layer deposition uniformity using a set tilt angle, or ii) the tilt angle to achieve the desired layer deposition uniformity using a set orthogonal distance and a set lateral distance.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20210050474
    Abstract: Embodiments disclose LEDs that operate using impact ionization. Devices include a first conductivity type layer, an intrinsic layer, and an impact ionization layer. In some embodiments, a charge layer is on the intrinsic layer, where the charge layer comprises a first material and has a net charge. The impact ionization layer comprises a second material. The charge layer forms a barrier for transporting carriers until a bias of at least 1.5 times a bandgap of the second material is applied, and a resulting electric field in the impact ionization layer is greater than or equal to a threshold for the second material. In some embodiments the first intrinsic layer is on the first conductivity type layer and is made of the first material, and a compositional step at an interface between the intrinsic layer and the impact ionization layer creates a barrier for transporting carriers.
    Type: Application
    Filed: August 10, 2020
    Publication date: February 18, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Norbert Krause
  • Publication number: 20210036183
    Abstract: A semiconductor structure can comprise a plurality of first semiconductor layers comprising wide bandgap semiconductor layers, a narrow bandgap semiconductor layer, and a chirp layer between the plurality of first semiconductor layers and the narrow bandgap semiconductor layer. The values of overlap integrals between different electron wavefunctions in a conduction band of the chirp layer can be less than 0.05 for intersubband transition energies greater than 1.0 eV, and/or the values of overlaps between electron wavefunctions and barrier centers in a conduction band of the chirp layer can be less than 0.3 nm?1, when the structure is biased at an operating potential. The chirp layer can comprise a short-period superlattice with alternating wide bandgap barrier layers and narrow bandgap well layers, wherein the thickness of the barrier layers, or the well layers, or the thickness of both the barrier and well layers changes throughout the chirp layer.
    Type: Application
    Filed: October 2, 2020
    Publication date: February 4, 2021
    Applicant: Silanna UV Technologies Pte Ltd
    Inventors: Norbert Krause, Guilherme Tosi
  • Patent number: 10749072
    Abstract: Light emitting device and methods for forming the devices include a substrate and a nanowire placed on the substrate, where the nanowire comprises a core made of a semiconductor material. A cladding encloses the nanowire and has a breakdown voltage larger than a breakdown voltage of the core. A source of an electric field is provided, where the core is at least partially aligned with and lies at least partially within the electric field such that a cycling of the electric field creates charge separation and electron-hole recombination in the core.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 18, 2020
    Assignee: Silanna UV Technologies Pte Ltd
    Inventor: Norbert Krause
  • Publication number: 20200243715
    Abstract: Resonant optical cavity light emitting devices are disclosed, where the device includes an opaque substrate, a first reflective layer, a first spacer region, a light emitting region, a second spacer region, and a second reflective layer. The light emitting region is configured to emit a target emission deep ultraviolet wavelength and is positioned at a separation distance from the reflector. The second reflective layer may have a metal composition comprising elemental aluminum and a thickness less than 15 nm. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·?/n. K is a constant ranging from 0.25 to 10, ? is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Patent number: 10656088
    Abstract: In some embodiments, a semiconductor biosensor includes a plurality of wells, a plurality of detectors, and processing circuitry. Each well is configured to hold a test sample and to allow the test sample to be irradiated with ultraviolet radiation. The plurality of detectors are configured to capture a spectral response of the test sample irradiated with the ultraviolet radiation. Each well is coupled directly onto a detector, and each detector includes a) a photodiode and b) a planar optical antenna tuned to a particular wavelength. The planar optical antenna is between the photodiode and the well. The processing circuitry is coupled to the plurality of detectors, the processing circuitry being configured to calculate an average spectral response for the plurality of detectors.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 19, 2020
    Assignee: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Publication number: 20200144795
    Abstract: A light emitting device includes a substrate, a buffer layer, a first active layer, and a plurality of mesa regions. A portion of the first active layer includes a first electrical polarity. The plurality of mesa regions includes at least a portion of the first active layer, a light emitting region on the portion of the first active layer, and a second active layer on the light emitting region. A portion of the second active layer includes a second electrical polarity. The light emitting region is configured to emit light which has a target wavelength between 200 nm to 300 nm. A thickness of the light emitting region is a multiple of the target wavelength, and a dimension of the light emitting region parallel to the substrate is smaller than 10 times the target wavelength, such that the emitted light is confined to fewer than 10 transverse modes.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Applicant: Silanna UV Technologies Pte Ltd
    Inventors: Johnny Cai Tang, Petar Atanackovic
  • Publication number: 20200119226
    Abstract: Resonant optical cavity light emitting devices are disclosed, where the device includes an opaque substrate, a first spacer region, a first reflective layer, a light emitting region, a second spacer region, and a second reflective layer. The light emitting region is configured to emit a target emission deep ultraviolet wavelength, and is positioned at a separation distance from the reflector. The second reflective layer may have a metal composition comprising elemental aluminum and a thickness less than 15 nm. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·?/n. K is a constant ranging from 0.25 to 10, ? is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Applicant: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic
  • Patent number: 10622514
    Abstract: Resonant optical cavity light emitting devices are disclosed, where the device includes an opaque substrate, a first spacer region, a first reflective layer, a light emitting region, a second spacer region, and a second reflective layer. The light emitting region is configured to emit a target emission deep ultraviolet wavelength, and is positioned at a separation distance from the reflector. The second reflective layer may have a metal composition comprising elemental aluminum and a thickness less than 15 nm. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·?/n. K is a constant ranging from 0.25 to 10, ? is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 14, 2020
    Assignee: Silanna UV Technologies Pte Ltd
    Inventor: Petar Atanackovic