Patents Assigned to STMicroelectronics, Inc.
  • Patent number: 10396185
    Abstract: A method of forming a finFET transistor device includes forming a crystalline, compressive strained silicon germanium (cSiGe) layer over a substrate; masking a first region of the cSiGe layer so as to expose a second region of the cSiGe layer; subjecting the exposed second region of the cSiGe layer to an implant process so as to amorphize a bottom portion thereof and transform the cSiGe layer in the second region to a relaxed SiGe (rSiGe) layer; performing an annealing process so as to recrystallize the rSiGe layer; epitaxially growing a tensile strained silicon layer on the rSiGe layer; and patterning fin structures in the tensile strained silicon layer and in the first region of the cSiGe layer.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: August 27, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC
    Inventors: Bruce B. Doris, Hong He, Nicolas J. Loubet, Junli Wang
  • Patent number: 10388772
    Abstract: A tunneling field effect transistor is formed from a fin of semiconductor material on a support substrate. The fin of semiconductor material includes a source region, a drain region and a channel region between the source region and drain region. A gate electrode straddles over the fin at the channel region. Sidewall spacers are provided on each side of the gate electrode. The source of the transistor is made from an epitaxial germanium content source region grown from the source region of the fin and doped with a first conductivity type. The drain of the transistor is made from an epitaxial silicon content drain region grown from the drain region of the fin and doped with a second conductivity type.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 20, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, Salih Muhsin Celik
  • Patent number: 10388594
    Abstract: According to principles of the disclosure as explained herein, selected leads are electrically connected through metal strips to the lead frame until the end of the manufacturing process. The lead frame is grounded through the manufacturing process to prevent any ESD event from causing damage to the protected leads. In the final singulation step, the leads are electrically isolated from each other and from the lead frame, thus maintaining protection from a potential ESD event up until the final package singulation step.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: August 20, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Frederick Ray Gomez, Tito Mangaoang, Jr., Jefferson Talledo
  • Patent number: 10388659
    Abstract: A vertical tunneling FET (TFET) provides low-power, high-speed switching performance for transistors having critical dimensions below 7 nm. The vertical TFET uses a gate-all-around (GAA) device architecture having a cylindrical structure that extends above the surface of a doped well formed in a silicon substrate. The cylindrical structure includes a lower drain region, a channel, and an upper source region, which are grown epitaxially from the doped well. The channel is made of intrinsic silicon, while the source and drain regions are doped in-situ. An annular gate surrounds the channel, capacitively controlling current flow through the channel from all sides. The source is electrically accessible via a front side contact, while the drain is accessed via a backside contact that provides low contact resistance and also serves as a heat sink. Reliability of vertical TFET integrated circuits is enhanced by coupling the vertical TFETs to electrostatic discharge (ESD) diodes.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 20, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John H. Zhang
  • Patent number: 10357964
    Abstract: One or more embodiments are directed to a microfluidic assembly that includes an interconnect substrate coupled to a microfluidic die. In one embodiment, the microfluidic die includes a ledge with a plurality of bond pads. The microfluidic assembly further includes an interconnect substrate having an end resting on the ledge proximate the bond pads. In another embodiment, the interconnect substrate abuts a side surface of the ledge or is located proximate the ledge. Conductive elements couple the microfluidic die to contacts of the interconnect substrate. Encapsulant is located over the conductive elements, the bond pads, the contacts.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: July 23, 2019
    Assignees: STMicroelectronics, Inc., STMicroelectronics (Malta) Ltd
    Inventors: Simon Dodd, Ivan Ellul, Christopher Brincat
  • Patent number: 10355020
    Abstract: Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 16, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC.
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-chen Yeh
  • Patent number: 10353384
    Abstract: A radio-frequency identification (RFID) device includes an RFID block configured to support RFID communication; a memory having a storage area configured to store a list of pulse width modulation (PWM) parameters; a PWM circuit configured to generate a PWM signal based on a PWM parameter received by the PWM circuit; and a configuration and control (CC) circuit coupled to the RFID block, the memory, and the PWM circuit, where the RFID block, the PWM circuit, the CC circuit, and the memory form part of an RFID tag, where the CC circuit is configured to, in an automatic playback mode: sequentially read the list of PWM parameters from a beginning of the list of PWM parameters; and sequentially send the list of PWM parameters to the PWM circuit.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: July 16, 2019
    Assignees: STMICROELECTRONICS, INC., STMICROELECTRONICS (GRENOBLE 2) SAS
    Inventors: John Tran, Gwenael Maillet
  • Patent number: 10354927
    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: July 16, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Pierre Morin, Yann Mignot
  • Patent number: 10352980
    Abstract: An embodiment method of detecting an arc fault includes communicating a power line signal, including a communication signal modulated on an alternating current power signal, over a power line. The communication signal is communicated according to a power line network protocol. A power spectrum of the communication signal includes a first frequency band and a second frequency band different from the first frequency band. In accordance with the power line network protocol, a power of the communication signal in the first frequency band is attenuated in comparison to the power of the communication signal in the second frequency band. The method further includes performing arc fault detection on the spectral portions of the power line signal that are within the first frequency band.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: July 16, 2019
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC.
    Inventors: Oleg Logvinov, Mauro Conti, Roberto Cappelletti
  • Patent number: 10355086
    Abstract: A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate comprising an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: July 16, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Kejia Wang, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 10347569
    Abstract: Embodiments of the present disclosure are directed to leadframes having the cantilevered extension that includes an integral support on the end of the lead nearest the die pad. A support integral to the leadframe allows the support to be built to the proper height to support the cantilevered lead in each package and reduces or eliminates the upward, downward, and side to side deflections caused or allowed by supports built-in to the tooling of the manufacturing equipment. Also, by building the support into the leadframe, the leadframes may be pretaped prior to the die attach and wire bonding steps of the manufacturing process.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: July 9, 2019
    Assignee: STMicroelectronics, Inc.
    Inventor: Jefferson Talledo
  • Publication number: 20190208240
    Abstract: A channel stream is received and demultiplexed into a video packetized elementary stream (PES), audio packetized elementary stream (PES), and program clock reference (PCR). Indexing circuitry stores the video PES and the audio PES in a buffer, locates a presentation time stamp (PTS) in the video PES and stores that PTS in the buffer, locates a start of each group of pictures (GOP) in the video PES and stores those locations in the buffer, and locates a PTS in the audio PES and stores that PTS in the buffer. Control circuitry empties the buffer of an oldest GOP in the video PES if the PCR is greater than the PTS of a second oldest GOP stored in the buffer, and empties the buffer of each PES packet of the audio PES that has a PTS that is less than the PTS of the oldest GOP stored.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Applicants: STMicroelectronics International N.V., STMicroelectronics, Inc.
    Inventors: Udit Kumar, Bharat Jauhari, Chandandeep Singh Pabla
  • Patent number: 10340195
    Abstract: A method for co-integrating finFETs of two semiconductor material types, e.g., Si and SiGe, on a bulk substrate is described. Fins for finFETs may be formed in an epitaxial layer of a first semiconductor type, and covered with an insulator. A portion of the fins may be removed to form voids in the insulator, and the voids may be filled by epitaxially growing a semiconductor material of a second type in the voids. The co-integrated finFETs may be formed at a same device level.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 2, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Nicolas Loubet, Prasanna Khare, Qing Liu
  • Publication number: 20190186916
    Abstract: A sensor chip is mounted on a PCB and electrically connected to a SOC mounted on the PCB via at least one conductive trace. The sensor chip includes configuration registers storing and outputting configuration data, and a PLD receiving digital data. The PLD performs an extraction of features of the digital data in accordance with the configuration data, and the configuration data includes changeable parameters of the extraction. A classification unit processes the extracted features of the digital data so as to generate a context of an electronic device into which the sensor chip is incorporated relative to its surroundings, the processing being performed in using a processing technique operating in accordance with the configuration data. The configuration data also includes changeable parameters of the processing technique. The classification unit outputs the context to data registers for storage.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: STMicroelectronics, Inc.
    Inventors: Mahesh CHOWDHARY, Sankalp DAYAL
  • Patent number: 10325927
    Abstract: Single gate and dual gate FinFET devices suitable for use in an SRAM memory array have respective fins, source regions, and drain regions that are formed from portions of a single, contiguous layer on the semiconductor substrate, so that STI is unnecessary. Pairs of FinFETs can be configured as dependent-gate devices wherein adjacent channels are controlled by a common gate, or as independent-gate devices wherein one channel is controlled by two gates. Metal interconnects coupling a plurality of the FinFET devices are made of a same material as the gate electrodes. Such structural and material commonalities help to reduce costs of manufacturing high-density memory arrays.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 18, 2019
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 10326754
    Abstract: An electronic component includes a processor and a memory. The electronic component has a secure platform capable of storing at least one dual key pair and a corresponding digital signature. There is also a system including a host machine and an electronic component capable of being operated by the host machine. The electronic component has a processor, a memory, and a secure platform capable of storing at least one dual key pair and a corresponding digital signature. Another aspect describes a method, which includes reading a public key from an electronic component by a host machine, verifying the public key against a stored key in the host machine, digitally signing data using a private key from the electronic component, verifying the signed data against the stored key, and using the electronic component by the host machine only if the signed data and the public key are verified.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 18, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Sean Newton, John Tran, David Tamagno
  • Patent number: 10324254
    Abstract: A strip of sacrificial semiconductor material is formed on top of a non-sacrificial semiconductor material substrate layer. A conformal layer of the non-sacrificial semiconductor material is epitaxially grown to cover the substrate layer and the strip of sacrificial semiconductor material. An etch is performed to selectively remove the strip of sacrificial semiconductor material and leave a hollow channel surrounded by the conformal layer and the substrate layer. Using an anneal, the conformal layer and the substrate layer are reflowed to produce an optical waveguide structure including the hollow channel.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: June 18, 2019
    Assignee: STMicroelectronics, Inc.
    Inventor: Qing Liu
  • Patent number: 10319630
    Abstract: A plurality of metal tracks are formed in a plurality of intermetal dielectric layers stacked in an integrated circuit die. Thin protective dielectric layers are formed around the metal tracks. The protective dielectric layers act as a hard mask to define contact vias between metal tracks in the intermetal dielectric layers.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 11, 2019
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu
  • Patent number: 10319816
    Abstract: A fin field effect transistor includes a Si fin including a central portion between end portions of the fin, and a SiGe channel region disposed on the central portion of the fin. The SiGe channel region includes a facet free SiGe region having Ge atoms diffused into the Si fin and includes a same shape as the Si fin outside the central portion.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: June 11, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Hong He, Nicolas Loubet, Junli Wang
  • Patent number: 10319647
    Abstract: An analog integrated circuit is disclosed in which short channel transistors are stacked on top of long channel transistors, vertically separated by an insulating layer. With such a design, it is possible to produce a high density, high power, and high performance analog integrated circuit chip including both short and long channel devices that are spaced far enough apart from one another to avoid crosstalk. In one embodiment, the transistors are FinFETs and the long channel devices are multi-gate FinFETs. In one embodiment, single and dual damascene devices are combined in a multi-layer integrated circuit cell. The cell may contain various combinations and configurations of the short and long-channel devices. A high density cell can be made by simply shrinking the dimensions of the cells and replicating two or more cells in the same size footprint as the original cell.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: June 11, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Qing Liu, John H. Zhang