Patents Assigned to STMicroelectronics Pte Ltd
  • Patent number: 9991409
    Abstract: An optical detection sensor functions as a proximity detection sensor that includes an optical system and a selectively transmissive structure. Electromagnetic radiation such as laser light can be emitted through a transmissive portion of the selectively transmissive structure. A reflected beam can be detected to determine the presence of an object. The sensor is formed by encapsulating the transmissive structure in a first encapsulant body and encapsulating the optical system in a second encapsulant body. The first and second encapsulant bodies are then joined together. In a wafer scale assembling the structure resulting from the joined encapsulant bodies is diced to form optical detection sensors.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 5, 2018
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Yonggang Jin, Wee Chin Judy Lim
  • Patent number: 9972557
    Abstract: A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: May 15, 2018
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: Wing Shenq Wong
  • Patent number: 9918667
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 20, 2018
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Patent number: 9911890
    Abstract: One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to optical sensor that includes a substrate, an image sensor die and a light-emitting device. A first surface of the image sensor die is coupled to the substrate, and a recess is formed extending into the image sensor die from the first surface toward a second surface of the image sensor die. A light transmissive layer is formed in the image sensor die between the recess and the first surface. The optical sensor further includes a light-emitting device that is coupled to the substrate and positioned within the recess formed in the image sensor die.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 6, 2018
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Loic Pierre Louis Renard, Cheng-Lay Ang
  • Patent number: 9851328
    Abstract: A compact microelectronic gas sensor module includes electrical contacts formed in such a way that they do not consume real estate on an integrated circuit chip. Using such a design, the package can be miniaturized further. The gas sensor is packaged together with a custom-designed Application Specific Integrated Circuit (ASIC) that provides circuitry for processing sensor signals to identify gas species within a sample under test. In one example, the output signal strength of the sensor is enhanced by providing an additional metal surface area in the form of pillars exposed to an electrolytic gas sensing compound, while reducing the overall package size. In some examples, bottom side contacts are formed on the underside of the substrate on which the gas sensor is formed. Sensor electrodes may be electrically coupled to the ASIC directly, or indirectly by vias.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: December 26, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Jerome Teysseyre, Yonggang Jin, Suman Cherian
  • Patent number: 9831357
    Abstract: Embodiments of the present disclosure are directed to optical packages having a package body that includes a light protection coating on at least one surface of a transparent material. The light protection coating includes one or more openings to allow light to be transmitted to the optical device within the package body. In one embodiment, the light protection coating and the openings allow substantially perpendicular radiation to be directed to the optical device within the package body. In one exemplary embodiment the light protection coating is located on an outer surface of the transparent material. In another embodiment, the light protection coating is located on an inner surface of the transparent material inside of the package body.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 28, 2017
    Assignees: STMICROELECTRONICS PTE LTD., STMICROELECTRONICS R&D LIMITED
    Inventors: Yonggang Jin, David Lawson, Colin Campbell, Anandan Ramasamy
  • Patent number: 9824924
    Abstract: Embodiments are directed to a package that includes an electric device having a recess. In one embodiment, the electric device is a sensor and the recess reduces signal drift of the sensor caused by thermal expansion of the package. In another embodiment, the recess is substantially filled with adhesive material, thus increasing adhesion between the electric device and a substrate of the package while at the same time allowing for lower adhesive fillets.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: November 21, 2017
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Kim-Yong Goh, Xueren Zhang, Yiyi Ma
  • Patent number: 9818937
    Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measurable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 14, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Olivier Le Neel, Ravi Shankar
  • Patent number: 9810653
    Abstract: Miniature resistive gas detectors incorporate thin films that can selectively identify specific gases when heated to certain characteristic temperatures. A solid state gas sensor module is disclosed that includes a gas sensor, a heater, and a temperature sensor, stacked over an insulating recess. The insulating recess is partially filled with a support material that provides structural integrity. The solid state gas sensor module can be integrated on top of an ASIC on a common substrate. With sufficient thermal insulation, such a gas detector can be provided as a low-power component of mobile electronic devices such as smart phones. A method of operating a multi-sensor array allows detection of relative concentrations of different gas species by either using dedicated sensors, or by thermally tuning the sensors to monitor different gas species.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: November 7, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Ravi Shankar, Olivier Le Neel, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 9793427
    Abstract: One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to an optical sensor that includes a substrate and a sensor die. A through-hole extends through the substrate, and a trench is formed in a first surface of the substrate and is in fluid communication with the through-hole. The sensor die is attached to the first surface of the substrate and covers the first through-hole and a first portion of the trench. A second portion of the trench is left uncovered by the sensor die.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 17, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: David Gani
  • Patent number: 9780080
    Abstract: A method for making an optical proximity sensor includes forming a package top plate having an optical transmit opening and an optical receive opening extending therethrough, attaching an optical transmit element to the package top plate adjacent the optical transmit opening, and attaching an optical receive element to the package top plate adjacent the optical receive opening. A package body is formed onto the package top plate to define an optical transmit cavity receiving the optical transmit element and an optical receive cavity receiving the optical receive element.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: October 3, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: Yonggang Jin
  • Patent number: 9768216
    Abstract: An image sensor device may include an interconnect layer, an image sensor IC on the interconnect layer, and a barrel adjacent the interconnect layer and having first electrically conductive traces. The image sensor device may include a liquid crystal focus cell carried by the barrel and having cell layers, and second electrically conductive contacts. A pair of adjacent cell layers may have different widths. The image sensor device may include an electrically conductive adhesive body coupling at least one of the second electrically conductive contacts to a corresponding one of the first electrically conductive traces.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: September 19, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Dave Alexis Delacruz, David Gani
  • Patent number: 9754756
    Abstract: A vacuum integrated electronic device has an anode region of conductive material; an insulating region on top of the anode region; a cavity extending through the insulating region and having a sidewall; and a cathode region. The cathode region has a tip portion extending peripherally within the cavity, adjacent to the sidewall of the cavity. The cathode region is formed by tilted deposition, carried out at an angle of 30-60° with respect to a perpendicular to the surface of device.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 5, 2017
    Assignees: STMicroelectronics S.r.l., STMicroelectronics Pte Ltd
    Inventors: Davide Giuseppe Patti, Myung Sung Kim
  • Patent number: 9754916
    Abstract: Embodiments of the present disclosure provide a semiconductor device, a semiconductor package, and a method for manufacturing a semiconductor device. The semiconductor device comprises: a semiconductor die; an electrical isolation layer formed on a surface of the semiconductor die; a substrate; and a non-conductive adhesive layer disposed between the electrical isolation layer and the substrate, so as to adhere the electrical isolation layer to the substrate.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 5, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: Jing-En Luan
  • Patent number: 9754861
    Abstract: A lead frame having a plurality of concentric lead frame rings configured to receive and support a variety of integrated circuit die having a variety of sizes. The rings are separated from each other by gaps and coupled together by a plurality of tie bars. The concentric rings may be circular or rectangular. The tie bars may extend diagonally from the rings or perpendicularly to the rings.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: September 5, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: Wing Shenq Wong
  • Patent number: 9723186
    Abstract: A low-cost resin lens is disclosed for use in miniature cameras. The resin lens features a low profile that is particularly well-suited to consumer products such as smart phones. The resin lens is mounted to an integrated circuit die that is attached to a standard four-layer substrate. The integrated circuit die includes electronic and/or optoelectronic circuits to support digital image capture, transfer, and processing. Image correction software adjusts the image to correct for distortion introduced by the resin lens.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 1, 2017
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Loic Pierre Louis Renard, Wee Chin Judy Lim
  • Patent number: 9698105
    Abstract: A method includes forming a molded panel that includes a number of integrated circuits, fan-out components and stiffeners embedded in an encapsulation material. A redistribution layer is formed over the integrated circuits and the fan-out components. The redistribution layer is electrically coupled to contacts of the integrated circuits. The molded panel is singulated to form electronic devices. Each electronic device each an integrated circuit that is separated from a fan-out component by a portion of the encapsulation material and a stiffener separated from the fan-out component by a second portion of the encapsulation material.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: July 4, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventor: Jing-En Luan
  • Patent number: 9697896
    Abstract: A phase change non-volatile memory device has a memory array with a plurality of memory cells arranged in rows and columns, a column decoder and a row decoder designed to select columns, and, respectively, rows of the memory array during operations of programming of corresponding memory cells. A control logic, coupled to the column decoder and the row decoder, is designed to execute a sequential programming command, to control the column decoder and row decoder to select one column of the memory array and execute sequential programming operations on a desired block of memory cells belonging to contiguous selected rows of the selected column.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: July 4, 2017
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS PTE LTD.
    Inventors: Antonino Conte, Alberto Jose′ Di Martino, Kailash Khairnar
  • Patent number: 9691801
    Abstract: An image sensing device may include an interconnect layer and grid array contacts carried by the interconnect layer, and an image sensor IC carried by the interconnect layer and coupled to the grid array contacts, the image sensor IC having an image sensing surface. The image sensing device may include a transparent plate carried by the image sensor IC and aligned with the image sensing surface, and a cap carried by the interconnect layer and having an opening aligned with the image sensing surface. The cap may have an upper wall spaced above the interconnect layer and the image sensor IC to define an internal cavity, and the cap may define an air vent coupled to the internal cavity.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 27, 2017
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Jean-Michel Grebet, Wee Chin Judy Lim
  • Patent number: 9689824
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 27, 2017
    Assignee: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam