Abstract: Embodiments of the present disclosure are directed to optical packages having a package body that includes a light protection coating on at least one surface of a transparent material. The light protection coating includes one or more openings to allow light to be transmitted to the optical device within the package body. In one embodiment, the light protection coating and the openings allow substantially perpendicular radiation to be directed to the optical device within the package body. In one exemplary embodiment the light protection coating is located on an outer surface of the transparent material. In another embodiment, the light protection coating is located on an inner surface of the transparent material inside of the package body.
Abstract: Embodiments are directed to a package that includes an electric device having a recess. In one embodiment, the electric device is a sensor and the recess reduces signal drift of the sensor caused by thermal expansion of the package. In another embodiment, the recess is substantially filled with adhesive material, thus increasing adhesion between the electric device and a substrate of the package while at the same time allowing for lower adhesive fillets.
Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measurable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract: Miniature resistive gas detectors incorporate thin films that can selectively identify specific gases when heated to certain characteristic temperatures. A solid state gas sensor module is disclosed that includes a gas sensor, a heater, and a temperature sensor, stacked over an insulating recess. The insulating recess is partially filled with a support material that provides structural integrity. The solid state gas sensor module can be integrated on top of an ASIC on a common substrate. With sufficient thermal insulation, such a gas detector can be provided as a low-power component of mobile electronic devices such as smart phones. A method of operating a multi-sensor array allows detection of relative concentrations of different gas species by either using dedicated sensors, or by thermally tuning the sensors to monitor different gas species.
Type:
Grant
Filed:
July 17, 2014
Date of Patent:
November 7, 2017
Assignee:
STMICROELECTRONICS PTE LTD
Inventors:
Ravi Shankar, Olivier Le Neel, Tien-Choy Loh, Shian-Yeu Kam
Abstract: One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to an optical sensor that includes a substrate and a sensor die. A through-hole extends through the substrate, and a trench is formed in a first surface of the substrate and is in fluid communication with the through-hole. The sensor die is attached to the first surface of the substrate and covers the first through-hole and a first portion of the trench. A second portion of the trench is left uncovered by the sensor die.
Abstract: A method for making an optical proximity sensor includes forming a package top plate having an optical transmit opening and an optical receive opening extending therethrough, attaching an optical transmit element to the package top plate adjacent the optical transmit opening, and attaching an optical receive element to the package top plate adjacent the optical receive opening. A package body is formed onto the package top plate to define an optical transmit cavity receiving the optical transmit element and an optical receive cavity receiving the optical receive element.
Abstract: An image sensor device may include an interconnect layer, an image sensor IC on the interconnect layer, and a barrel adjacent the interconnect layer and having first electrically conductive traces. The image sensor device may include a liquid crystal focus cell carried by the barrel and having cell layers, and second electrically conductive contacts. A pair of adjacent cell layers may have different widths. The image sensor device may include an electrically conductive adhesive body coupling at least one of the second electrically conductive contacts to a corresponding one of the first electrically conductive traces.
Abstract: A vacuum integrated electronic device has an anode region of conductive material; an insulating region on top of the anode region; a cavity extending through the insulating region and having a sidewall; and a cathode region. The cathode region has a tip portion extending peripherally within the cavity, adjacent to the sidewall of the cavity. The cathode region is formed by tilted deposition, carried out at an angle of 30-60° with respect to a perpendicular to the surface of device.
Abstract: Embodiments of the present disclosure provide a semiconductor device, a semiconductor package, and a method for manufacturing a semiconductor device. The semiconductor device comprises: a semiconductor die; an electrical isolation layer formed on a surface of the semiconductor die; a substrate; and a non-conductive adhesive layer disposed between the electrical isolation layer and the substrate, so as to adhere the electrical isolation layer to the substrate.
Abstract: A lead frame having a plurality of concentric lead frame rings configured to receive and support a variety of integrated circuit die having a variety of sizes. The rings are separated from each other by gaps and coupled together by a plurality of tie bars. The concentric rings may be circular or rectangular. The tie bars may extend diagonally from the rings or perpendicularly to the rings.
Abstract: A low-cost resin lens is disclosed for use in miniature cameras. The resin lens features a low profile that is particularly well-suited to consumer products such as smart phones. The resin lens is mounted to an integrated circuit die that is attached to a standard four-layer substrate. The integrated circuit die includes electronic and/or optoelectronic circuits to support digital image capture, transfer, and processing. Image correction software adjusts the image to correct for distortion introduced by the resin lens.
Type:
Grant
Filed:
February 19, 2014
Date of Patent:
August 1, 2017
Assignee:
STMicroelectronics Pte Ltd
Inventors:
Loic Pierre Louis Renard, Wee Chin Judy Lim
Abstract: A phase change non-volatile memory device has a memory array with a plurality of memory cells arranged in rows and columns, a column decoder and a row decoder designed to select columns, and, respectively, rows of the memory array during operations of programming of corresponding memory cells. A control logic, coupled to the column decoder and the row decoder, is designed to execute a sequential programming command, to control the column decoder and row decoder to select one column of the memory array and execute sequential programming operations on a desired block of memory cells belonging to contiguous selected rows of the selected column.
Abstract: A method includes forming a molded panel that includes a number of integrated circuits, fan-out components and stiffeners embedded in an encapsulation material. A redistribution layer is formed over the integrated circuits and the fan-out components. The redistribution layer is electrically coupled to contacts of the integrated circuits. The molded panel is singulated to form electronic devices. Each electronic device each an integrated circuit that is separated from a fan-out component by a portion of the encapsulation material and a stiffener separated from the fan-out component by a second portion of the encapsulation material.
Abstract: An image sensing device may include an interconnect layer and grid array contacts carried by the interconnect layer, and an image sensor IC carried by the interconnect layer and coupled to the grid array contacts, the image sensor IC having an image sensing surface. The image sensing device may include a transparent plate carried by the image sensor IC and aligned with the image sensing surface, and a cap carried by the interconnect layer and having an opening aligned with the image sensing surface. The cap may have an upper wall spaced above the interconnect layer and the image sensor IC to define an internal cavity, and the cap may define an air vent coupled to the internal cavity.
Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
Type:
Grant
Filed:
October 19, 2015
Date of Patent:
June 27, 2017
Assignee:
STMICROELECTRONICS PTE LTD.
Inventors:
Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
Abstract: An integrated circuit (IC) device includes an IC and encapsulating material surrounding the IC. Leads are coupled to the IC and extend outwardly from sides of the encapsulating material, with each lead having three contiguous exposed segments with upper and lower bends defining a Z-shape. In another example, the leads include an upper horizontal segment, lower horizontal segment, and intermediate curved segment extending upwardly from the upper horizontal segment and downwardly to the lower horizontal segment.
Abstract: An optical assembly may include a substrate, a housing carried by the substrate and having at least one adhesive-receiving recess in an upper surface thereof, and a lens carried by the housing. The optical assembly may also include a liquid crystal focus cell adjacent the lens and including cell layers and pairs of electrically conductive contacts associated therewith. The optical assembly may also include at least one electrically conductive member within the at least one adhesive-receiving recess and coupling together each pair of the electrically conductive contacts, and an adhesive body in the at least one adhesive-receiving recess covering the at least one electrically conductive member.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
June 6, 2017
Assignee:
STMICROELECTRONICS PTE LTD
Inventors:
Wee Chin Judy Lim, David Gani, Hk Looi, Bs Aw, Cheng-hai Cheh
Abstract: A device is provided for monitoring the total current discharged from a battery. The device includes a bridge circuit of resistors in which one of the resistors has a resistance which varies according to the current which has passed through it. Whenever the battery passes a current to a load, a small portion of the current is passed through the bridge circuit.
Abstract: The embodiments of the present disclosure provide a proximity sensor, an electronic apparatus and a method for manufacturing a proximity sensor. The proximity sensor comprises a substrate, a sensor chip, a light-emitting device, a non-transparent isolation structure and a non-transparent molding material, wherein the sensor chip is located on the substrate and electrically coupled to the substrate; the light-emitting device is located on the sensor chip and electrically coupled to the sensor chip; the non-transparent isolation structure is located on the sensor chip and isolates the light-emitting device from a sensor region of the sensor chip; and the non-transparent molding material at least partially covers the substrate, the sensor chip and the non-transparent isolation structure, such that a portion of the proximity sensor which is located right above the sensor region and the light-emitting device is not covered by the non-transparent molding material.
Abstract: A process of forming optical sensors includes sealing an imaging portion of each of a plurality of optical sensors on a sensor wafer with a transparent material. The operation of sealing leaves a bonding portion of each of the optical sensors exposed. The process further includes cutting the wafer into a plurality of image sensor dies after sealing the optical sensors such that each image sensor die includes one of the optical sensors sealed with a corresponding portion of the transparent material.