Patents Assigned to STMicroelectronics Pte Ltd
-
Patent number: 11226399Abstract: A semiconductor package that is a proximity sensor includes a light transmitting die, a light receiving die, an ambient light sensor, a cap, and a substrate. The light receiving die and the light transmitting die are coupled to the substrate. The cap is coupled to the substrate forming a first chamber around the light transmitting die and a second chamber around the light receiving die. The cap further includes a recess with contact pads. The ambient light sensor is mounted within the recess of the cap and coupled to the contact pads. The cap includes electrical traces that are coupled to the contact pads within the recess coupling the ambient light sensor to the substrate. By utilizing a cap with a recess containing contact pads, a proximity sensor can be formed in a single semiconductor package all while maintaining a compact size and reducing the manufacturing costs of proximity sensors.Type: GrantFiled: August 13, 2019Date of Patent: January 18, 2022Assignee: STMICROELECTRONICS PTE LTDInventor: David Gani
-
Patent number: 11211254Abstract: A first dielectric layer made of a first dielectric material is deposited over a semiconductor substrate. A buffer layer is then deposited on an upper surface of the first dielectric layer. A trench is opened to extend through the buffer layer and the first dielectric layer. A second dielectric layer made of a second dielectric material is the deposited in a conformal manner on the buffer layer and filling the trench. Chemical mechanical polishing of the second dielectric layer is performed to remove overlying portions of the second dielectric layer with the buffer layer being used as a polish stop. After removing the buffer layer, the first dielectric layer and the second dielectric material filling the trench form a pre-metallization dielectric layer having a substantially planar upper surface.Type: GrantFiled: November 12, 2020Date of Patent: December 28, 2021Assignee: STMicroelectronics Pte LtdInventors: Yuzhan Wang, Pradeep Basavanahalli Kumarswamy, Hong Kia Koh, Alberto Leotti, Patrice Ramonda
-
Publication number: 20210399157Abstract: The present disclosure is directed to a sensor die with an embedded light sensor and an embedded light emitter as well as methods of manufacturing the same. The light emitter in the senor die is surrounded by a resin. The sensor die is incorporated into semiconductor device packages as well as methods of manufacturing the same. The semiconductor device packages include a first optically transmissive structure on the light sensor of the sensor die and a second optically transmissive structure on the light emitter of the sensor die. The first optically transmissive structure and the second optically transmissive structure cover and protect the light sensor and the light emitter, respectively. A molding compound is on a surface of a sensor die and covers sidewalls of the first and second optically transmissive structures on the sensor die.Type: ApplicationFiled: June 10, 2021Publication date: December 23, 2021Applicant: STMICROELECTRONICS PTE LTDInventor: Jing-En LUAN
-
Publication number: 20210395077Abstract: The present disclosure is directed to a package (e.g., a chip scale package, a wafer level chip scale package (WLCSP), or a package containing a sensor die) with a sensor die on a substrate (e.g., an application-specific integrated circuit die (ASIC), an integrated circuit, or some other type of die having active circuitry) and encased in a molding compound. The sensor die includes a sensing component that is aligned with a centrally located opening that extends through the substrate. The centrally located opening extends through the substrate at an inactive portion of the substrate. The centrally located opening exposes the sensing component of the sensor die to an external environment outside the package.Type: ApplicationFiled: June 10, 2021Publication date: December 23, 2021Applicant: STMICROELECTRONICS PTE LTDInventor: Jing-En LUAN
-
Publication number: 20210382197Abstract: A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.Type: ApplicationFiled: August 25, 2021Publication date: December 9, 2021Applicants: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED, STMICROELECTRONICS PTE LTDInventors: Wing Shenq WONG, Andy PRICE, Eric CHRISTISON
-
Publication number: 20210384241Abstract: A digital image sensor package includes an image sensor substrate and a glass covering. The image sensor substrate carries photodiodes. The glass covering has a bottom surface, a top surface opposite the bottom surface, and a sidewall delimiting a perimeter edge of the glass covering. The glass covering overlies the photodiodes. A surface area of the top surface of the glass covering is greater than a surface area of the bottom surface of the glass covering such that the sidewall is anti-perpendicular to the top and bottom surfaces of the glass.Type: ApplicationFiled: May 21, 2021Publication date: December 9, 2021Applicant: STMicroelectronics Pte LtdInventors: Laurent HERARD, David GANI
-
Patent number: 11193821Abstract: One or more embodiments are directed to ambient light sensor packages, and methods of making ambient light sensor packages. One embodiment is directed to an ambient light sensor package that includes an ambient light sensor die having opposing first and second surfaces, a light sensor on the first surface of the ambient light sensor die, one or more conductive bumps on the second surface of the ambient light sensor die, and a light shielding layer on at least the first surface and the second surface of the ambient light sensor die. The light shielding layer defines an opening over the light sensor. The ambient light sensor package may further include a transparent cover between the first surface of the ambient light sensor die and the light shielding layer, and an adhesive that secures the transparent cover to the ambient light sensor die.Type: GrantFiled: December 7, 2018Date of Patent: December 7, 2021Assignee: STMicroelectronics Pte LtdInventors: Laurent Herard, David Gani
-
Publication number: 20210376061Abstract: An integrated circuit includes a polysilicon region that is doped with a dopant. A portion of the polysilicon region is converted to a polyoxide region which includes un-oxidized dopant ions. A stack of layers overlies over the polyoxide region. The stack of layers includes: a first ozone-assisted sub-atmospheric pressure thermal chemical vapor deposition (O3 SACVD) TEOS layer; and a second O3 SACVD TEOS layer; wherein the first and second O3 SACVD TEOS layers are separated from each other by a dielectric region. A thermally annealing is performed at a temperature which induces outgassing of passivation atoms from the first and second O3 SACVD TEOS layers to migrate to passivate interface charges due to the presence of un-oxidized dopant ions in the polyoxide region.Type: ApplicationFiled: April 21, 2021Publication date: December 2, 2021Applicant: STMicroelectronics Pte LtdInventor: Yean Ching YONG
-
Publication number: 20210336047Abstract: An integrated circuit includes a MOSFET device and a monolithic diode device, wherein the monolithic diode device is electrically connected in parallel with a body diode of the MOSFET device. The monolithic diode device is configured so that a forward voltage drop VfD2 of the monolithic diode device is less than a forward voltage drop VfD1 of the body diode of the MOSFET device. The forward voltage drop VfD2 is process tunable by controlling a gate oxide thickness, a channel length and body doping concentration level. The tunability of the forward voltage drop VfD2 advantageously permits design of the integrated circuit to suit a wide range of applications according to requirements of switching speed and efficiency.Type: ApplicationFiled: March 30, 2021Publication date: October 28, 2021Applicant: STMicroelectronics Pte LtdInventors: Shin Phay LEE, Voon Cheng NGWAN, Maurizio Gabriele CASTORINA
-
Publication number: 20210327863Abstract: Wafer level proximity sensors are formed by processing a silicon substrate wafer and a silicon cap wafer separately, bonding the cap wafer to the substrate wafer, forming an interconnect structure of through-silicon vias within the substrate, and singulating the bonded wafers to yield individually packaged sensors. The wafer level proximity sensor is smaller than a conventional proximity sensor and can be manufactured using a shorter fabrication process at a lower cost. The proximity sensors are coupled to external components by a signal path that includes the through-silicon vias and a ball grid array formed on a lower surface of the silicon substrate. The design of the wafer level proximity sensor passes more light from the light emitter and more light to the light sensor.Type: ApplicationFiled: June 28, 2021Publication date: October 21, 2021Applicant: STMICROELECTRONICS PTE LTDInventor: David GANI
-
Patent number: 11137517Abstract: A method for forming a molded proximity sensor with an optical resin lens and the structure formed thereby. A light sensor chip is placed on a substrate, such as a printed circuit board, and a diode, such as a laser diode, is positioned on top of the light sensor chip and electrically connected to a bonding pad on the light sensor chip. Transparent, optical resin in liquid form is applied as a drop over the light sensor array on the light sensor chip as well as over the light-emitting diode. After the optical resin is cured, a molding compound is applied to an entire assembly, after which the assembly is polished to expose the lenses and have a top surface flush with the top surface of the molding compound.Type: GrantFiled: June 2, 2020Date of Patent: October 5, 2021Assignees: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED, STMICROELECTRONICS PTE LTDInventors: Wing Shenq Wong, Andy Price, Eric Christison
-
Publication number: 20210305438Abstract: The present disclosure is directed to a package, such as a wafer level chip scale package (WLCSP), with a die coupled to a central portion of a transparent substrate. The transparent substrate includes a central portion having and a peripheral portion surrounding the central portion. The package includes a conductive layer coupled to a contact of the die within the package that extends from the transparent substrate to an active surface of the package. The active surface is utilized to mount the package within an electronic device or to a printed circuit board (PCB) accordingly. The package includes a first insulating layer separating the die from the conductive layer, and a second insulating layer on the conductive layer.Type: ApplicationFiled: February 26, 2021Publication date: September 30, 2021Applicants: STMICROELECTRONICS LTD, STMICROELECTRONICS PTE LTDInventors: David GANI, Yiying KUO
-
Patent number: 11069667Abstract: Wafer level proximity sensors are formed by processing a silicon substrate wafer and a silicon cap wafer separately, bonding the cap wafer to the substrate wafer, forming an interconnect structure of through-silicon vias within the substrate, and singulating the bonded wafers to yield individually packaged sensors. The wafer level proximity sensor is smaller than a conventional proximity sensor and can be manufactured using a shorter fabrication process at a lower cost. The proximity sensors are coupled to external components by a signal path that includes the through-silicon vias and a ball grid array formed on a lower surface of the silicon substrate. The design of the wafer level proximity sensor passes more light from the light emitter and more light to the light sensor.Type: GrantFiled: March 31, 2016Date of Patent: July 20, 2021Assignee: STMICROELECTRONICS PTE LTDInventor: David Gani
-
Publication number: 20210214211Abstract: A blind opening is formed in a bottom surface of a semiconductor substrate to define a thin membrane suspended from a substrate frame. The thin membrane has a topside surface and a bottomside surface. A stress structure is mounted to one of the topside surface or bottomside surface of the thin membrane. The stress structure induces a bending of the thin membrane which defines a normal state for the thin membrane. Piezoresistors are supported by the thin membrane. In response to an applied pressure, the thin membrane is bent away from the normal state and a change in resistance of the piezoresistors is indicative of the applied pressure.Type: ApplicationFiled: December 8, 2020Publication date: July 15, 2021Applicant: STMicroelectronics Pte LtdInventors: Ravi Shankar, Tien Choy Loh, Ananya Venkatesan
-
Publication number: 20210193476Abstract: A first dielectric layer made of a first dielectric material is deposited over a semiconductor substrate. A buffer layer is then deposited on an upper surface of the first dielectric layer. A trench is opened to extend through the buffer layer and the first dielectric layer. A second dielectric layer made of a second dielectric material is the deposited in a conformal manner on the buffer layer and filling the trench. Chemical mechanical polishing of the second dielectric layer is performed to remove overlying portions of the second dielectric layer with the buffer layer being used as a polish stop. After removing the buffer layer, the first dielectric layer and the second dielectric material filling the trench form a pre-metallization dielectric layer having a substantially planar upper surface.Type: ApplicationFiled: November 12, 2020Publication date: June 24, 2021Applicant: STMicroelectronics Pte LtdInventors: Yuzhan WANG, Pradeep BASAVANAHALLI KUMARSWAMY, Hong Kia KOH, Alberto LEOTTI, Patrice RAMONDA
-
Patent number: 11009474Abstract: The present disclosure is directed to a gas sensor device that includes a plurality of gas sensors. Each of the gas sensors includes a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. Each of the SMO films is designed to be sensitive to a different gas concentration range. As a result, the gas sensor device is able to obtain accurate readings for a wide range of gas concentration levels. In addition, the gas sensors are selectively activated and deactivated based on a current gas concentration detected by the gas sensor device. Thus, the gas sensor device is able to conserve power as gas sensors are on when appropriate instead of being continuously on.Type: GrantFiled: December 12, 2018Date of Patent: May 18, 2021Assignee: STMICROELECTRONICS PTE LTDInventors: Malek Brahem, Hatem Majeri, Olivier Le Neel, Ravi Shankar
-
Patent number: 11009477Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.Type: GrantFiled: April 29, 2019Date of Patent: May 18, 2021Assignee: STMicroelectronics Pte Ltd.Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
-
Patent number: 10942157Abstract: The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.Type: GrantFiled: February 21, 2018Date of Patent: March 9, 2021Assignees: STMICROELECTRONICS PTE LTD, STMICROELECTRONICS S.R.L.Inventors: Malek Brahem, Hatem Majeri, Olivier Le Neel, Ravi Shankar, Enrico Rosario Alessi, Pasquale Biancolillo
-
Patent number: 10910287Abstract: A semiconductor package having a die with a sidewall protected by molding compound, and methods of forming the same are disclosed. The package includes a die with a first surface opposite a second surface and sidewalls extending between the first and second surfaces. A redistribution layer is formed on the first surface of each die. An area of the first surface of the die is greater than an area of the redistribution layer, such that a portion of the first surface of the die is exposed. When molding compound is formed over the die and the redistribution layer to form a semiconductor package, the molding compound is on the first surface of the die between an outer edge of the redistribution layer and an outer edge of the first surface. The molding compound is also on the sidewalls of the die, which provides protection against chipping or cracking during transport.Type: GrantFiled: February 8, 2019Date of Patent: February 2, 2021Assignee: STMICROELECTRONICS PTE LTDInventors: Yun Liu, David Gani
-
Patent number: 10905362Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.Type: GrantFiled: May 8, 2019Date of Patent: February 2, 2021Assignee: STMICROELECTRONICS PTE. LTD.Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung