Abstract: The present invention provides a method and system for controlling leakage power consumption at a System on Chip (SoC) level during a normal run or a boot-up mode. The leakage power reduction is achieved by incorporating a central programmable controller in the SoC architecture and test structures of idle SoC peripherals to place them into an Absolute Minimum Power consumption state with respect to static and dynamic power.
Abstract: A method of sharing testing components for multiple embedded memories and the memory system incorporating the same. The memory system includes multiple test controllers, multiple interface devices, a main controller, and a serial interface. The main controller is used for initializing testing of each of the dissimilar memory groups using a serial interface and local test controllers. The memory system results in reduced routing congestion and faster testing of plurality of dissimilar memories.
Type:
Grant
Filed:
November 28, 2006
Date of Patent:
May 31, 2011
Assignee:
STMicroelectronics Pvt. Ltd.
Inventors:
Amit Kashyap, Prashant Dubey, Akhil Garg
Abstract: A circuit includes a differential amplifier having a folded cascode architecture with a pair of cascode transistors. A sensing circuit senses a common mode input voltage of a differential input signal applied to the differential amplifier. A bias generator circuit generates a bias voltage for application to the pair of cascode transistors in the folded cascode architecture. The bias generator circuit is connected to an output of the sensing circuit such that the generated bias voltage has a value which is dependent on the sensed common mode input voltage. This dependence stabilizes a common mode output voltage from the differential amplifier in response to changes in the common mode input voltage.
Abstract: A circuit for glitchless switching between asynchronous clocks includes a select circuit and enable circuits. The select circuit receives a selection signal for selecting one of the clock input signals and to generate enabling signals for activating the corresponding enable circuits on the basis of the current output signal. The feedback logic in the circuit ensures that at any given instance only one of the clock input signals is outputted so as to avoid the formation of glitches. The circuit can be applied to switches between any number of asynchronous clocks.
Abstract: A filtering module filters out high frequency signals, primarily noise, from an input data stream. The filtering module includes an input module, a phase detecting module, and a threshold module. The input module performs either a charging or a discharging across a capacitor on a basis of an RC time constant. The phase detecting module is coupled to the input module to keep identical phase at a first node and an output node. The threshold module is coupled to the phase detecting module for providing an output signal based on a threshold voltage and the charging or the discharging across the capacitor.
Abstract: A slave device has an input/output adapted for connection to a serial data line of an I2C bus configuration, a clock input adapted for connection to a serial clock line of the I2C bus configuration, and an interrupt input adapted for connection to the serial clock line of the I2C bus configuration. The slave device senses transitions on the serial clock line through the interrupt input to trigger capturing of a command code on serial data line through the input output. In response to receipt of the command code, the slave device controls the serial data line through the input/output to send an acknowledgement of receipt of the command code. However, if the captured command code is not recognized the slave device inhibits sending of the acknowledgement of the command code. The pull up connection on the serial data line of the I2C bus configuration will, when the slave device is inhibited from acknowledging, produce a high logic state indicative of a no acknowledgement.
Abstract: An area efficient distributed device for integrated voltage regulators comprising at least one filler cell connected between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size replica of said device is coupled to said I/O rails for distributing replicas of said device on the periphery of said chip. The device is connected as small size replica on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
Type:
Grant
Filed:
January 3, 2006
Date of Patent:
May 10, 2011
Assignee:
STMicroelectronics Pvt. Ltd.
Inventors:
Joshipura Jwalant, Nitin Bansal, Amit Katyal, Massimiliano Picca
Abstract: An integrated circuit includes a number of pads. The integrated circuit further includes a cascode transistor having an open drain connection to a first one of the pads. A bias generator circuit is included in the integrated circuit. The bias generator circuit has an output connected to a gate terminal of the cascode transistor. In a first mode of operation, the bias generator outputs a bias signal that is derived from an integrated circuit supply voltage present at a second one of the pads. However, in a second mode of operation provided when the integrated circuit supply voltage is not present, the bias generator generates the bias signal derived from a voltage present at the first one of the pads.
Abstract: A wear leveling solution is proposed for use in a storage device based on a flash memory. The flash memory includes a plurality of physical blocks, which are adapted to be erased individually. A corresponding method starts with the step for erasing one of the physical blocks. One of the physical blocks being allocated for storing data is selected; this operation is performed in response to the reaching of a threshold by an indication of a difference between a number of erasures of the erased physical block and a number of erasures of the selected physical block. At least the data of the selected physical block being valid is copied into the erased physical block. The selected physical block is then erased.
Abstract: A level shifter for integrated circuits includes input stage transistors, reference stage transistors, a cascode stage coupled to the input stage and the reference stage transistors and a pair of comparators. The cascode stage generates a first cascode output and a second cascode output. The input stage transistors selectively conduct a low reference voltage as the first cascode output based on a pair of inputs provided to the input stage transistors. The reference stage transistors selectively conduct a high reference voltage as the second cascode output based on a first comparator output and a second comparator output. The pair of comparators generate the first and the second comparator outputs based on the first and the second cascode outputs.
Abstract: A device for implementing a sum-of-products expression includes a first set of 2-input Shift-and-Add (2SAD) blocks receiving a coefficient set/complex sum-of-products expression for generating a first set of partially optimized expression terms by applying recursive optimization therein, a second set of 1-input Shift-and-Add (1SAD) blocks receiving response from the 2SAD blocks for generating a second set of partially optimized expression terms by applying vertical optimization therein, a third set of 2SAD blocks receiving recursively and vertically optimized response from the first set of 2SAD block and the second set of 1SAD blocks for generating a third set of partially optimized expression terms by applying horizontal optimization therein, a fourth set of 2SAD blocks receiving response from the blocks for generating a fourth set of partially optimized expression terms by applying decomposition and factorization, and a fifth set of 2SAD blocks receiving response from the fourth set of 2SAD blocks, for gene
Abstract: A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
Abstract: Described herein are various principles for operating a transmitter circuit to reduce noise affecting a signal being generated and reducing jitter. In some embodiments, a circuit is operated in a way that switching occurs at or above a bit rate of transmission, such that at least one switch changes state at least for every bit. Operating the circuit in such a way leads to a switching rate that is above a resonant frequency of the circuit and prevents large oscillations and noise from being inserted into the signal and causing communication problems.
Type:
Application
Filed:
December 30, 2009
Publication date:
March 17, 2011
Applicant:
STMicroelectronics Pvt. Ltd.
Inventors:
Nitin Gupta, Tapas Nandy, Phalguni Bala, Pikul Sarkar
Abstract: The disclosure relates a compensated output buffer circuit providing an improved slew rate control and a method for minimizing the variations in the current slew rate of the buffer over process, voltage and temperature (PVT) conditions. The output buffer circuit includes a split-gate compensated driver and a slew rate control circuit. Accordingly, a desired slew rate can be maintained with fewer variations over wide range of variations in PVT conditions.
Type:
Grant
Filed:
December 28, 2007
Date of Patent:
March 8, 2011
Assignee:
STMicroelectronics Pvt. Ltd.
Inventors:
Vijender Singh Chauhan, Kallol Chatterjee, Paras Garg
Abstract: A Schmitt trigger circuit includes a first inverter having an input coupled to an input terminal; a second inverter having an input coupled to the input terminal; a first transistor having a source coupled to VDD, a drain coupled to an output of the first inverter, and a gate coupled to an output terminal; a second transistor having a source coupled to ground, a drain coupled to an output of the second inverter, and a gate coupled to the output terminal; a third transistor having a source coupled to VDD, a drain coupled to the output terminal, and a gate coupled to the output of the first inverter; and a fourth transistor having a source coupled to ground, a drain coupled to the output terminal, and a gate coupled to the output of the second inverter.
Abstract: The present disclosure relates to reduction in the effect of kickback in comparators by means of charge injection implemented by means of voltage controlled switches with attributes similar to those of an input differential pair. The voltage controlled switches produce charge to neutralize the charge loss during latching of inputs in the comparator.
Abstract: A write boost circuit provides an automatic mode control for boost with different modalities with respect to the external supply voltage and also with respect to the extent of boost required at different process corners. The write boost circuit also takes care of the minimum boost provided to process corners with good writability where less boost is required. The boost is realized in terms of ground raising in the particular context and in general applicable to all other methods.
Abstract: A wear leveling solution is proposed for use in a storage device based on a flash memory. The flash memory includes a plurality of physical blocks, which are adapted to be erased individually. A corresponding method starts with the step for erasing one of the physical blocks. One of the physical blocks being allocated for storing data is selected; this operation is performed in response to the reaching of a threshold by an indication of a difference between a number of erasures of the erased physical block and a number of erasures of the selected physical block. At least the data of the selected physical block being valid is copied into the erased physical block. The selected physical block is then erased.
Abstract: A flip-flop circuit having low power consumption includes a sensing circuit, and a clock generating circuit. The flip-flop is leading edge triggered and operates on an internally generated pseudo clock signal. The sensing circuit senses a change in an input signal and an output signal of the flip-flop. The clock generating circuit generates a pseudo clock signal with a sharp rise and fall based upon an external clock signal.
Abstract: The embodiments of the present invention provide a scalable method for implementing FFT/IFFT computations in multiprocessor architectures that provides improved throughput by eliminating the need for inter-processor communication after the computation of the first “log2P” stages for an implementation using “P” processing elements, comprising computing each butterfly of the first “log2P” stages on either a single processor or each of the “P” processors simultaneously and distributing the computation of the butterflies in all the subsequent stages among the “P” processors such that each chain of cascaded butterflies consisting of those butterflies that have inputs and outputs connected together, are processed by the same processor.