Abstract: A read-amplifier circuit includes a core with a first input and a second input that are intended to receive in a measurement phase a differential signal arising from a first bit line and from a second bit line of the memory device. The circuit also includes a memory element with two inverters coupled in a crossed manner. The first and second inputs are respectively connected to two of the power supply nodes of the inverters via two transfer capacitors. A first controllable circuit is configured to temporarily render the memory element floating during an initial phase preceding the measurement phase and during the measurement phase.
Type:
Grant
Filed:
November 29, 2016
Date of Patent:
October 17, 2017
Assignees:
STMicroelectronics S.r.l., STMicroelectronics (Rousset) SAS
Abstract: An NFC device may include a first and second controller interfaces, a first communication channel coupled to the first controller interface, and a second communication channel connected to the second controller interface. A secure element may include a secure element interface connected to the first communication channel and encryption/decryption circuitry configured to encrypt data to be sent on the first communication channel for being framed into the encrypted frames and to decrypt encrypted data extracted from the encrypted frames and received from the first communication channel. The secure element may also include management circuitry configured to control the encryption/decryption circuitry for managing the encrypted communication with the NFC controller.
Abstract: An electronic circuit includes a functional circuit in series with at least one first current source between two terminals of application of a power supply voltage. The first current source is controllable between an operating mode where it delivers a fixed current, independent from the power consumption of said functional circuit, and an operating mode where it delivers a variable current, depending on the power consumption of the functional circuit.
Abstract: An integrated circuit includes a substrate with several functional blocks formed thereon. At least two identical functional blocks are respectively disposed at two or more different locations on the integrated circuit. Electrically inactive dummy modules in the neighborhoods and/or inside of the functional blocks are provided, wherein at least two different electrically inactive dummy modules are includes in the respective neighborhoods and/or inside of the at least two identical functional blocks.
Type:
Grant
Filed:
March 22, 2017
Date of Patent:
October 3, 2017
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Pascal Fornara, Christian Rivero, Guilhem Bouton
Abstract: An integrated structure includes a first MOS transistor with a first controllable gate region overlying a first gate dielectric and a second MOS transistor neighboring the first MOS transistor and having a second controllable gate region overlying the first gate dielectric. A common conductive region overlies the first and second gate regions and is separated therefrom by a second gate dielectric. The common conductive region includes a continuous element located over a portion of the first and second gate regions and a branch extending downward from the continuous element toward the substrate as far as the first gate dielectric. The branch located between the first and second gate regions.
Abstract: One embodiment provides a method for reading a memory cell of a memory plane of a memory of the erasable electrically-programmable ROM type. The word line and of the bit line to which the memory cell belongs are selected and the content of the cell is read via a read amplifier. One input of the read amplifier is connected to the bit line and pre-charged at a pre-charge voltage. During the read operation, a source voltage higher than the pre-charge voltage is applied to the source of the floating-gate transistor of the cell. A read current flows from the cell towards the input of the read amplifier and then flows through a programmed cell.
Type:
Grant
Filed:
June 15, 2016
Date of Patent:
October 3, 2017
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
François Tailliet, Marc Battista, Victorien Brecte
Abstract: A method can be used for writing in a memory location of the electrically-erasable and programmable memory type. The memory location includes a first memory cell with a first transistor having a first gate dielectric underlying a first floating gate and a second memory cell with a second transistor having a second gate dielectric underlying a second floating gate that is connected to the first floating gate. In a first writing phase, an identical tunnel effect is implemented through the first gate dielectric and the second gate dielectric. In a second writing phase, a voltage across the first gate dielectric but not the second gate dielectric is increased.
Abstract: A circuit includes a current source series-connected with a load between first and second terminals and an element coupled in parallel with the load between the first and second terminals. A value of a current in the current source is controlled based on a current flowing in the element between the first and second terminals. The value of the current in the current source is controlled proportional to power consumption in the load based on the current flowing in the element between the first and second terminals. The element is used to limit a voltage across the load while the value of the current is being controlled.
Abstract: Bipolar transistors and MOS transistors are formed in a common process. A semiconductor layer is arranged on an insulating layer. On a side of the bipolar transistors: an insulating region including the insulating layer is formed; openings are etched through the insulating region to delimit insulating walls; the openings are filled with first epitaxial portions; and the first epitaxial portions and a first region extending under the first epitaxial portions and under the insulating walls are doped. On the side of the bipolar transistors and on a side of the MOS transistors: gate structures are formed; second epitaxial portions are made; and the second epitaxial portions covering the first epitaxial portions are doped.
Type:
Application
Filed:
March 9, 2017
Publication date:
September 21, 2017
Applicants:
STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Rousset) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
Inventors:
Olivier Weber, Emmanuel Richard, Philippe Boivin
Abstract: A method for detecting a fault injection in a circuit, wherein a bit pattern is mixed in a bit stream originating from a noise source and the presence of this pattern is detected in a signal sampled downstream of the mixing.
Abstract: A memory sense amplifier is configurable on command between a current-sensing mode and a voltage-sensing mode. The sense amplifier is intended, in its current-sensing configuration, to read a datum stored in a memory cell connected to the amplifier, and is intended, in its voltage-sensing configuration, to read a datum stored in a bit-line latch connected to the amplifier.
Abstract: An integrated circuit including a plurality of first semiconductor strips of a first conductivity type and of second semiconductor strips of a second conductivity type arranged in alternated and contiguous fashion on a region of the second conductivity type, including for each of the first strips: a plurality of bias contacts; for each bias contact, a switch capable of applying a potential on the bias contact; two detection contacts arranged at the ends of the first strip; and a detection circuit having its activation causing the turning off of the switches and the comparison with a threshold of the resistance between the detection contacts.
Abstract: A memory device includes an input/output interface, a bus of SPI type coupled to the input/output interface, and a plurality of individual non-volatile memory devices connected to the bus of SPI type. The chip select inputs of each individual memory device are all connected to one and the same chip select wire of the SPI bus. The individual memory devices are further configured and controllable so as to behave, as seen by the input/output interface, as a single non-volatile memory device, the total memory space of which has a total memory capacity equal to the sum of the individual memory capacities of the individual devices.
Abstract: A communication system includes an I2C bus interconnecting at least one first device and one second device. At least one direct data link, other than the I2C bus, interconnects the first and second devices. The system is configurable to operate in: a first operating mode providing for data only transmission between the first and second devices over the I2C bus; and a second operating mode providing for simultaneous data transmission between the first and second devices over both the I2C bus and said data link.
Abstract: A variable capacitor includes a fixed main capacitor electrode disposed in a first metal layer overlying a substrate, a second main capacitor electrode spaced from the fixed main capacitor electrode, and a movable capacitor electrode disposed in the first metal layer adjacent the fixed main capacitor electrode. The movable capacitor electrode can be caused to be in a first position ohmically electrically connected to the fixed main capacitor electrode such that the variable capacitor has a first capacitance value or in a second position spaced from the fixed main capacitor electrode such that the variable capacitor has a second capacitance value.
Abstract: A device is provided for jamming electromagnetic radiation liable to be emitted by at least one portion of an interconnect region located above at least one zone of an integrated electronic circuit produced in and on a semiconductor substrate. The device includes an antenna located above the at least one zone of the circuit and generating circuit coupled to the antenna and configured to generate an electrical signal having at least one pseudo-random property to pass through the antenna.
Type:
Application
Filed:
July 28, 2016
Publication date:
August 31, 2017
Applicant:
STMicroelectronics (Rousset) SAS
Inventors:
Thomas Ordas, Alexandre Sarafianos, Stephane Chesnais, Fabrice Marinet
Abstract: A memory device of the non-volatile electrically-erasable and programmable memory type is provided. The memory device includes a matrix memory plane of memory cells connected to bit lines. Programming circuitry is configured to select a memory cell and to apply a programming pulse to the corresponding bit line. The memory plane is disposed in a local well at a floating potential and the programming circuitry is configured to increase the potential of the local well simultaneously with the application of the programming pulse to the bit line of a selected memory cell.
Abstract: The thinning of a semiconductor substrate of an integrated circuit from a back face is detected using the measurement of a physical quantity representative of the resistance between the ends of two electrically-conducting contacts situated at an interface between an insulating region and an underlying substrate region. The two electrically-conducting contacts extend through the insulating region to reach the underlying substrate region.
Abstract: A memory cell includes a selection transistor having a control gate and a first conduction terminal connected to a variable-resistance element. The memory cell is formed in a wafer comprising a semiconductor substrate covered with a first insulating layer, the insulating layer being covered with an active layer made of a semiconductor. The gate is formed on the active layer and has a lateral flank covered with a second insulating layer. The variable-resistance element includes a first layer covering a lateral flank of the active layer in a trench formed through the active layer along the lateral flank of the gate and reaching the first insulating layer, and a second layer made of a variable-resistance material.
Type:
Grant
Filed:
April 13, 2016
Date of Patent:
August 15, 2017
Assignees:
STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
Abstract: A semiconductor structure includes first and second source/drain region disposed in a semiconductor body and spaced from each other by a channel region. A gate electrode overlies the channel region and a capacitor electrode is disposed between the gate electrode and the channel region. A first gate dielectric is disposed between the gate electrode and the capacitor electrode and a second gate dielectric disposed between the capacitor electrode and the channel region. A first electrically conductive contact region is in electrical contact with the gate electrode and a second electrically conductive contact region in electrical contact with the capacitor electrode. The first and second contact regions are electrically isolated from one another.