Patents Assigned to STMicroelectronics S.r.l.
  • Patent number: 10231118
    Abstract: A method is provided for performing a management of a multi-subscription SIM module. The multi-subscription SIM module includes at least one memory adapted to store at least a first and a second profile associated with a respective first and a second mobile network operator. The memory includes a volatile portion. The operation of storing includes installing or updating profiles by downloading one or more downloaded profiles from a remote host. The management includes selecting one or more enabled profiles including an application to be executed and allocating a partition of the volatile portion of the memory to the one or more enabled profile.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 12, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Amedeo Veneroso
  • Patent number: 10231365
    Abstract: A thermal control process for an electronic power device including a multi junction integrated circuit may include defining a first and at least one second groups of junctions, with each group including one first and at least one second junctions, and associating a thermal detector with each group. A first group control may be executed which detects group electric signals representative of the temperature detected by the thermal detectors, processes the group electric signals with reference to a group critical thermal event, identifies a critical group when the corresponding group electric signal detects the critical group thermal event, and generates group deactivating signals suitable for selectively deactivating the first and the at least one second junctions of the identified critical group with respect to the remaining junctions of the integrated circuit.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: March 12, 2019
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS APPLICATION GMBH
    Inventors: Domenico Massimo Porto, Giovanni Luca Torrisi, Manuel Gaertner, Sergio Lecce
  • Patent number: 10230358
    Abstract: In accordance with an embodiment, a method includes receiving an enable signal. After the enable signal is asserted, it is determined whether a soft-start capacitor is electrically connected to an input of a ramp generator circuit while keeping an output of the ramp generator circuit low. If the soft-start capacitor is electrically connected to the input of the ramp generator circuit, a first current is injected into the input of the ramp generator circuit to generate a first voltage ramp at the output of the ramp generator circuit. If the soft-start capacitor is not electrically connected to the input of the ramp generator circuit, a second current is injected to the input of the ramp generator circuit to generate a second voltage ramp at the output of the ramp generator circuit. The second current is smaller than the first current.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: March 12, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventor: Marco Martini
  • Publication number: 20190072994
    Abstract: A circuit for generating a bandgap voltage includes a circuit module for generation of a base-emitter voltage difference comprising a pair of PNP bipolar substrate transistors which identify a first current path and a second current path. A first current mirror of an n type is connected between the first and second branches and is further connected via a resistance for adjustment of the bandgap voltage to the second bipolar transistor. A second current mirror of a p type is connected between the first and second branches, and connected so that the current mirrors repeat current of each other. In operation to generate the bandgap voltage, current flows from the supply voltage to ground only through said the first and second bipolar substrate transistors.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Calogero Marco Ippolito, Mario Chiricosta
  • Publication number: 20190074830
    Abstract: First and second comparators receive input signals of opposed polarities and drive operation of a switch in response thereto. A first current generator supplies a first current to the switch which, in response to the control of the first and second comparators, applies the first current, alternatively, to a first node or a second node. A second current generator sinks a second current from the first node and a third current generator sinks a third current from the second node. A logic circuit has inputs coupled to the first node and the second node, respectively, receives respective switching signals having fast switching wavefronts and delayed switching wavefronts. The output of logic circuit is configured for switching between a first state and a second state with switching between the first state and the second state triggered by the fast switching wavefronts of the respective switching signals.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 7, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Ignazio Bruno MIRABELLA, Agatino Antonino ALESSANDRO
  • Patent number: 10221066
    Abstract: A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: March 5, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giuseppe Barillaro, Alessandro Diligenti, Caterina Riva, Roberto Campedelli, Stefano Losa
  • Patent number: 10225635
    Abstract: A microelectromechanical microphone includes: a substrate; a sensor chip, integrating a microelectromechanical electroacoustic transducer; and a control chip operatively coupled to the sensor chip. In one embodiment, the sensor chip and the control chip are bonded to the substrate, and the sensor chip overlies, or at least partially overlies, the control chip. In another embodiment, the sensor is bonded to the substrate and a barrier is located around at least a portion of the sensor chip.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 5, 2019
    Assignees: STMicroelectronics S.r.l., STMicroelectronics (Malta) Ltd
    Inventors: Roberto Brioschi, Alex Gritti, Kevin Formosa, Paul Anthony Barbara
  • Patent number: 10225530
    Abstract: A MEMS device includes a fixed structure and a mobile structure with a reflecting element coupled to the fixed structure through at least a first deformable structure and a second deformable structure. Each of the first and second deformable structures includes a respective number of main piezoelectric elements, with the main piezoelectric elements of the first and second deformable structures configured to be electrically controlled for causing oscillations of the mobile structure about a first axis and a second axis, respectively. The first deformable structure further includes a respective number of secondary piezoelectric elements configured to be controlled so as to vary a first resonance frequency of the mobile structure about the first axis.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: March 5, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Domenico Giusti, Roberto Carminati
  • Patent number: 10224824
    Abstract: A driver includes a high-side driver transistor coupled between supply voltage and the gate drive nodes and provides a first charge current to a high side gate node of the high-side driver transistor until the gate drive node reaches a first gate drive threshold. Then a second charge current is provided to the high side gate node that is less than the first charge current. The gate drive node is limited to a first clamped threshold for a delay time. A gate drive current rise signal sets the value of the second charge current that charges the high side gate node and after the delay time the gate drive voltage is limited to a second clamped threshold greater than the first clamped threshold but less than the supply voltage. A gate drive programmable control signal sets the value of the second clamped threshold.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 5, 2019
    Assignee: STMicroelectronics S.R.L.
    Inventors: Alberto Iorio, Maurizio Foresta
  • Publication number: 20190063948
    Abstract: Disclosed herein is a method including receiving multi-axis accelerometer data representing a potential step taken by a user of an electronic device. The method also includes determining whether the potential step represented by the multi-axis accelerometer data is a false. This determination is made by calculating statistical data from the multi-axis accelerometer data, and applying a decision tree to the statistical data to perform a cross correlation that determines whether the potential step is a false positive. If the potential step is not a false positive, a step detection process is performed to determine whether the potential step is a countable step and, if the potential step is found to be a countable step, a step counter is incremented.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Marco Leo, Alessia Cagidiaco, Marco Catellano
  • Publication number: 20190068194
    Abstract: A level-shifter circuit operates to shift an input signal referenced to a first set supply voltages to generate an output signal referenced to a second set of supply voltages. The output signal from the level-shifter circuit is latched by a latching circuit. A logic gate has a first input configured to receive the input signal, a second input configured to receive a feedback signal and an output coupled to a input of the level shifting circuit. A feedback circuit has a first input configured to receive the output signal, a second input configured to receive the input signal and an output configured to generate the feedback signal. The feedback circuit operates to sense an uncontrolled switching event of the output signal occurring in the absence of a switching of the input signal and apply, in response thereto, the feedback signal to cancel the uncontrolled switching event.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 28, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Agatino Antonino ALESSANDRO, Ignazio Bruno MIRABELLA
  • Publication number: 20190068934
    Abstract: Disclosed herein is a MEMS device including a fixed structure, a mobile structure, and deformable structures extending therebetween. The deformable structures have first ends anchored along X and Y axes of the fixed structure, and have second ends anchored offset from the X and Y axes of the fixed structure. The deformable structures are shaped so as to curve from their anchoring points along the mobile structure back toward the mobile structure, to extend along the perimeter of the mobile structure, and to then curve away from the mobile structure and toward their anchoring points along the fixed structure. Each deformable structure has two piezoelectric elements that extend along the length of that deformable structure, with one piezoelectric element having a greater length than the other piezoelectric element.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Domenico GIUSTI, Roberto CARMINATI, Nicolo' BONI
  • Patent number: 10215652
    Abstract: A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: February 26, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Alberto Pagani
  • Patent number: 10217503
    Abstract: A reading circuit for a charge-retention circuit stage is provided with a storage capacitor coupled between a first biasing terminal and a floating node, and a discharge element coupled between the floating node and a reference terminal. The reading circuit further has an operational amplifier having a first input terminal that is coupled to the floating node and receives a reading voltage, a second input terminal receives a reference voltage, and an output terminal on which it supplies an output voltage, the value of which is a function of the comparison between the reading voltage and the reference voltage and indicative of a residual charge in the storage capacitor. A shifting stage shifts the value of the reading voltage of the floating node, before the comparison is made between the reading voltage and the reference voltage for supplying the output voltage.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: February 26, 2019
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Rousset) SAS, STMicroelectronics S.r.l.
    Inventors: Antonino Conte, Enrico Castaldo, Raul Andres Bianchi, Francesco La Rosa
  • Patent number: 10215782
    Abstract: A device measures the current in an inductive load using two separate current-measuring paths to detect the current in the inductive load. The inductive load is connected between first and second nodes, and the first node connected to a first voltage. The device includes first and second transistors cascaded together between the first node and a third node that is connected to a second voltage. First and second sense amplifiers measure the current in the inductive load. The first and second sense amplifiers are connected to at least one terminal of the first and second transistors. Two blocks sample and hold signals from the first and second sense amplifiers, which represent, respectively, the currents in the two separate current-measuring paths. The two currents are subtracted in a comparison node for generating an error signal that is compared with a predefined window and if outside the window a failure signal is generated.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 26, 2019
    Assignee: STMicroelectronics S.R.L.
    Inventors: Vanni Poletto, Riccardo Miglierina, Antonio Davide Leone, Sergio Lecce
  • Patent number: 10211744
    Abstract: A method and apparatus for secondary side current mode control of a converter are provided. In the method and apparatus, an output voltage of the converter is detected, where the converter has primary and secondary windings that are galvanically isolated in respective primary and secondary sides. A secondary control signal is generated in the secondary side based at least in part on the output voltage and a reference voltage. The secondary control signal is converted to a primary control signal provided in the primary side. The converter is driven in the primary side based at least in part on the primary control signal and a current sense signal indicative of a current flowing through the primary winding.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: February 19, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alberto Bianco, Giuseppe Scappatura
  • Patent number: 10211826
    Abstract: A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: February 19, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Marco Terenzi, Davide Ugo Ghisu
  • Patent number: 10211140
    Abstract: A method for forming an electronic device includes embedding an integrated circuit die in a package including substrate of thermally conductive material with front and back surfaces and a through-hole. The die is sunk in the through-hole. A first insulating material layer covers the die front surface and the package front surface with first windows for accessing die terminals. Package terminals and package track are arranged on the first insulating layer. A second insulating material layer covers the first insulating layer and the package tracks with second windows for accessing the package terminals.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: February 19, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Fulvio Vittorio Fontana, Giovanni Graziosi
  • Patent number: 10209125
    Abstract: A semiconductor device for flame detection, including: a semiconductor body having a first conductivity type conductivity, delimited by a front surface and forming a cathode region; an anode region having a second conductivity type conductivity, which extends within the semiconductor body, starting from the front surface, and forms, together with the cathode region, the junction of a photodiode that detect ultraviolet radiation emitted by the flames; a supporting dielectric region; and a sensitive region, which is arranged on the supporting dielectric region and varies its own resistance as a function of the infrared radiation emitted by the flames.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 19, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto
  • Patent number: 10211129
    Abstract: A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: February 19, 2019
    Assignee: STMicroelectronics S.R.L.
    Inventor: Fulvio Vittorio Fontana