Abstract: A galvanic isolation is provided between a first circuit and a second circuit. A first galvanically isolated link is configured to transfer power from a first circuit to a second circuit across the galvanic isolation. A second galvanically isolated link is configured to feed back an error signal from the second circuit to the first circuit across the galvanic isolation for use in regulating the power transfer and further configured to support bidirectional data communication between the first and second circuits across the galvanic isolation.
Abstract: A push-pull amplifier includes a pair of active devices driving the primary side of a double distributed active transformer (DDAT). The primary side of the DDAT includes a cascaded arrangement of primary windings of a first set of transformers with the active devices coupled ends of cascaded arrangement of primary windings. The secondary side of the DDAT includes a cascaded arrangement of secondary windings of a second set of transformers coupled to a load. Secondary windings of the first set of transformers drive inputs of respective active stages. Outputs of the active stages drive respective primary windings of the second set of transformers.
Abstract: A driver device coupled to a winding of an electro-mechanical actuator includes: a power stage driving the winding in a discontinuous mode by alternating conduction on-phases to off-phases, and a sensor circuit sensing a voltage across the winding in an off-phase, wherein, during such an off-phase the voltage across the winding includes a residual voltage which decays to zero. The power stage drives the winding from an on-phase to an off-phase by applying to the winding a reverse current pulse to invert the direction of flow of the current through the winding and produce an oscillation of the residual voltage, whereby the residual voltage includes a zero-crossing point after the current through the winding is exhausted. The sensor circuit senses the voltage across the winding at this zero-crossing point, whereby the voltage sensed across the winding at the zero-crossing point is indicative of the back electromotive force of the winding.
Type:
Grant
Filed:
June 28, 2017
Date of Patent:
April 17, 2018
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Michele Boscolo Berto, Ezio Galbiati, Giuseppe Maiocchi
Abstract: A power control module for an electronic converter is disclosed. The electronic converter includes a power stage comprising two input terminals for receiving a first power signal and two output terminals for providing a second power signal. The electronic converter includes, moreover, a control circuit configured to control operation of the power stage as a function of a feedback control signal. In particular, the power control module includes a pre-elaboration module configured to generate a reference signal as a function of the feedback control signal and a first signal being representative of a voltage applied to the two input terminals. An error amplifier is configured to generate a modified control signal as a function the reference signal and a second signal being representative of a current flowing through the two input terminals.
Abstract: A probe card includes a number probes. Each probe is adapted to contact a corresponding terminal of a circuit integrated in at least one die of a semiconductor material wafer during a test phase of the wafer. The probes include at least one probe adapted to provide and/or receive a radio frequency test signal to/from the corresponding terminal during the test phase. The probe card further includes at least one electromagnetic shield structure corresponding to the at least one probe adapted to provide and/or receive the radio frequency test signal for the at least partial shielding of an electromagnetic field irradiated by such at least one probe adapted to provide and/or receive the radio frequency test signal.
Abstract: An electronic system supports superior coupling by implementing a communication mechanism that provides at least for horizontal communication for example, on the basis of wired and/or wireless communication channels, in the system. Hence, by enhancing vertical and horizontal communication capabilities in the electronic system, a reduced overall size may be achieved, while nevertheless reducing complexity in printed circuit boards coupled to the electronic system. In this manner, overall manufacturing costs and reliability of complex electronic systems may be enhanced.
Abstract: Method for the estimation of the heart-rate using photoplethysmography on a body organ, for example a wrist of a user, comprising acquiring optically from said body organ a heart beat signal, acquiring an acceleration signal representative of the acceleration of said body organ, selecting data blocks of said acquired heart beat signal and acceleration signal, compensating said heart beat signal by the acceleration signal, calculating the heart rate value on the basis of said compensated heart beat signal.
Abstract: A pressure sensing device may include a body configured to distribute a load applied between first and second parts positioned one against the other, and a pressure sensor carried by the body. The pressure sensor may include a support body, and an IC die mounted with the support body and defining a cavity. The IC die may include pressure sensing circuitry responsive to bending associated with the cavity, and an IC interface coupled to the pressure sensing circuitry.
Type:
Grant
Filed:
February 19, 2015
Date of Patent:
April 10, 2018
Assignee:
STMicroelectronics S.R.L.
Inventors:
Alberto Pagani, Federico Giovanni Ziglioli, Bruno Murari
Abstract: A fully differential operational amplifier is provided. The amplifier has input nodes and includes a differential input stage for receiving input signals over the input nodes and providing output signals on first and second intermediary nodes. The amplifier includes a fully differential amplification stage having positive and negative inputs coupled to the first and second intermediary nodes, respectively. The amplifier includes a first compensation transistor having conduction terminals coupled to the first intermediary node and a first node, and a control terminal coupled to a negative output of the fully differential amplification stage. The amplifier includes a second compensation transistor having conduction terminals coupled to the second intermediary node and a second node, and a control terminal coupled to a positive output of the fully differential amplification stage.
Type:
Grant
Filed:
October 3, 2016
Date of Patent:
April 10, 2018
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Luca Giuffredi, Andrea Boni, Marco Ronchi
Abstract: Embodiments of the present disclosure include a method of operating an arc fault detection system, an arc fault detection system, and a system. An embodiment is a method of operating an arc fault detection system coupled to a power line, the method including determining one or more arc fault detection windows in power line signals on the power line, the power line signals comprising a communication signal and an alternating current (AC) power signal. The method further includes receiving the power line signals from the power line during the one or more arc fault detection windows, and performing arc fault detection processing on the received power line signals.
Type:
Grant
Filed:
May 23, 2017
Date of Patent:
April 10, 2018
Assignees:
STMicroelectronics S.r.l., STMicroelectronics, Inc.
Abstract: The present disclosure is directed to a microfluidic die that includes ejection circuitry and one time programmable memory with a minimal number of contact pads to external devices. The die includes a relatively large number of nozzles and a relatively small number of contact pads. The die includes decoding circuitry that utilizes the small number of contact pads to control the drive and ejection of the nozzles and the reading/writing of the memory with the same contact pads.
Type:
Grant
Filed:
August 18, 2016
Date of Patent:
April 10, 2018
Assignees:
STMICROELECTRONICS ASIA PACIFIC PTE LTD, STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC.
Inventors:
Teck Khim Neo, Mauro Pasetti, Franco Consiglieri, Luca Molinari, Andrea Nicola Colecchia, Simon Dodd
Abstract: A piezoelectric transducer for energy-harvesting systems includes a substrate, a piezoelectric cantilever element, a first magnetic element, and a second magnetic element, mobile with respect to the first magnetic element. The first magnetic element is coupled to the piezoelectric cantilever element. The first magnetic element and the second magnetic element are set in such a way that, in response to relative movements between the first magnetic element and the second magnetic element through an interval of relative positions, the first magnetic element and the second magnetic element approach one another without coming into direct contact, and the interaction between the first magnetic element and the second magnetic element determines application of a force pulse on the piezoelectric cantilever element.
Type:
Grant
Filed:
July 29, 2014
Date of Patent:
April 10, 2018
Assignee:
STMicroelectronics S.R.L.
Inventors:
Francesco Procopio, Carlo Valzasina, Alberto Corigliano, Raffaele Ardito, Giacomo Gafforelli
Abstract: A dielectric structure extends over the substrate and a transformer is integrated in the dielectric structure. The transformed includes a first winding in the dielectric layer at a first height and a second winding in the dielectric layer at a second height greater than the first height. The first and second windings are magnetically coupleable to one another. A magnetic element is positioned in alignment with the first and second windings. In one implementation, the magnetic element underlies the first winding in a position between the substrate and the first winding. In another implementation, the magnetic element overlies the second winding.
Abstract: An electronic device includes a rectifier bridge that includes an input configured to be coupled to power over Ethernet (PoE) power sourcing equipment (PSE), and an output. A transistor is configured to selectively couple the output with a load. The electronic device includes a maintain power signature (MPS) device, and a control circuit. The control circuit is to maintain the transistor on when a load current is above a threshold, source current from the rectifier bridge to the MPS device when the load current is below the threshold, and switch the transistor to a diode configuration when the load current is below the threshold.
Abstract: An integrated electronic device for detecting the composition of ultraviolet radiation includes a cathode region formed by a semiconductor material with a first type of conductivity. A first anode region and a second anode region are laterally staggered with respect to one another and are set in contact with the cathode region. The cathode region and the first anode region form a first sensor. The cathode region and the second anode region form a second sensor. In a spectral range formed by the UVA band and by the UVB band, the first and second sensors have, respectively, a first spectral responsivity and a second spectral responsivity different from one another.
Type:
Grant
Filed:
December 4, 2015
Date of Patent:
April 3, 2018
Assignee:
STMicroelectronics S.r.l.
Inventors:
Massimo Cataldo Mazzillo, Antonella Sciuto, Paolo BadalĂ
Abstract: A driver for a power field-effect transistor includes a first and second circuits that apply respective charge currents to a gate of the power field-effect transistor when a control signal has a first logic value and the voltage between the gate and the source is smaller than a first threshold voltage and greater than a second threshold voltage. Third and fourth circuits apply respective discharge currents to the gate when the control signal has a second logic value and the voltage between the gate and the source is greater than a third threshold voltage and smaller than a fourth threshold voltage. The driver may include at least one field-effect transistor configured to generate at least one of the first, second, third or fourth threshold voltage.
Abstract: Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane, provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane, provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
Abstract: An electronic device includes a semiconductor body and a dielectric layer extending over the semiconductor body. A galvanic isolation module includes a first metal region extending in the dielectric layer at a first height and a second metal region extending in the dielectric layer at a second height greater than the first height. The first and second metal regions are capacitively or magnetically coupleable together. The second metal region includes a side wall and a bottom wall coupled to one another through rounded surface portions.
Abstract: LED strings cascaded to one another are driven by an electronic circuit that includes regulation modules and a brightness-compensation module. The regulation modules carry out in sequence a current-regulation phase, in which they regulate the current that flows in the corresponding LED strings. The regulation module includes: a compensation regulator coupled to a compensation LED string and to a capacitor and a generator that generates an electrical quantity indicating the luminous flux emitted by the LED strings and by the compensation LED string. The compensation regulator regulates a current that flows in the compensation LED string as a function of the electrical quantity, discharging the capacitor through the compensation LED string.
Abstract: A roughened silicon surface is formed by a process including repetitively performed roughening cycles. Each roughening cycles including a step for depositing a non-planar polymeric layer over an area of a silicon body and a step for plasma etching the polymeric layer and the area of the silicon body etch in a non-unidirectional way. As a result, a surface portion of the silicon body is removed, in a non-uniform way, to a depth not greater than 10 nm.