Abstract: A pressure sensing device may include a body configured to distribute a load applied between first and second parts positioned one against the other, and a pressure sensor carried by the body. The pressure sensor may include a support body, and an IC die mounted with the support body and defining a cavity. The IC die may include pressure sensing circuitry responsive to bending associated with the cavity, and an IC interface coupled to the pressure sensing circuitry.
Type:
Grant
Filed:
March 7, 2018
Date of Patent:
October 6, 2020
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Alberto Pagani, Federico Giovanni Ziglioli, Bruno Murari
Abstract: A circuit includes a first input terminal, a second input terminal, a third input terminal and an output terminal. A first summation node adds signals at the first and third input terminals. A second summation node subtracts signals at the second and third input terminals. A selector selects between the added signals and subtracted signals in response to a selection signal. The output of the selector is integrated to generate an integrated signal. The integrated signal is compared by a comparator to a threshold, the comparator generating an output signal at the output terminal having a first level and a second level. Feedback of the output signal produces the selection signal causing the selector to select the added signals in response to the first level of the output signal and causing the selector to select the subtracted signals in response to the second level of the output signal.
Type:
Grant
Filed:
April 20, 2018
Date of Patent:
October 6, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Michele Vaiana, Paolo Pesenti, Mario Chiricosta, Calogero Marco Ippolito, Mario Maiore
Abstract: A comparator circuit is implemented using a simple comparator core having two gain stages integrated in a single circuit block. The circuit operates with improved speed and resolution in comparison to a conventional continuous-time comparator. Offset trimming allows for the crossing time of the comparator to be adjusted close to an ideal crossing time.
Abstract: Described herein is a non-volatile memory device in which it is possible to switch between different reading modes. In particular, the memory device includes a plurality of memory cells and implements, alternatively, a reading of a differential type and a reading of a single-ended type. Further described herein is a method for reading the memory device.
Abstract: A technique to make silicon oxide regions from porous silicon and related semiconductor structures are disclosed. The porous silicon is made in situ by anodizing P doped silicon regions. Thus, the shape and profile of the oxide regions may be controlled by controlling the shape and profile of the P doped silicon regions.
Type:
Grant
Filed:
August 20, 2018
Date of Patent:
October 6, 2020
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Simone Dario Mariani, Fabrizio Fausto Renzo Toia, Marco Sambi, Davide Giuseppe Patti, Marco Morelli, Giuseppe Barillaro
Abstract: An integrated sensor device including a first die, housing a sensor element to detect a quantity external to the sensor device and transduce the external quantity into an electrical sensing signal; a second die mechanically coupled to the first die so that the first and second dies are stacked on one another along one and the same axis; and at least one heater of a resistive type integrated in the first die and/or in the second die, having a first conduction terminal and a second conduction terminal configured to couple respective first and second conduction terminals of a signal generator for causing an electric current to flow, in use, between the first and second conduction terminals of the heater and generate heat by the Joule effect. It is possible to carry out calibration in temperature of the sensor element.
Type:
Grant
Filed:
July 30, 2018
Date of Patent:
October 6, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Dario Paci, Francesco Procopio, Carlo Valzasina, Paolo Angelini, Francesco Diazzi, Roberto Pio Baorda, Danilo Karim Kaddouri
Abstract: A photodetector includes a Geiger mode avalanche photodiode, which includes a body of semiconductor material, which is delimited by a front surface. The avalanche photodiode further includes: a cathode region having a first type of conductivity, which forms the front surface; and an anode region having a second type of conductivity, which extends in the cathode region starting from the front surface. The photodetector further includes: a dielectric region, arranged on the front surface; a quenching resistor, which extends on the dielectric region, is electrically connected to the anode region, and is laterally spaced apart with respect to the anode region; and an optical-isolation region, which extends through the dielectric region and laterally delimits a portion of the dielectric region, the anode region extending underneath the portion of the dielectric region, the optical-isolation region being moreover interposed between the portion of the dielectric region and the quenching resistor.
Abstract: An embodiment of an integrated device, including a chip of semiconductor material wherein an integrated circuit is integrated, is proposed; the integrated device includes a set of contact terminals for contacting the integrated circuit. At least one contact terminal of said set of contact terminals includes a contact layer of metal material being suitable to be directly coupled mechanically to an element external to the chip, and a coupling element for improving an electrical and/or mechanical coupling between the contact layer and the chip. The coupling element includes a coupling layer being formed by a combination between the metal material of the contact layer and the semiconductor material of the chip, with the coupling layer that is directly coupled to the chip and to the contact layer.
Type:
Grant
Filed:
June 30, 2017
Date of Patent:
October 6, 2020
Assignee:
STMicroelectronics S.r.l.
Inventors:
Alessandra Alberti, Paolo Badala', Antonello Santangelo
Abstract: A MEMS device is formed in a die of semiconductor material having a cavity defined therein and having an anchorage portion. A tiltable structure is elastically suspended over the cavity and has a main extension in a horizontal plane. First and second supporting arms extend between the anchorage portion and opposite sides of the tiltable structure. First and second resonant piezoelectric actuation structures are intended to be biased to thereby cause rotation of the tiltable structure about a rotation axis. The first supporting arm is formed by first and second torsion springs, which are rigid to movements out of the horizontal plane and compliant to torsion about the rotation axis and are coupled together at a constraint region. The first and second resonant piezoelectric actuation structures extend between the anchorage portion and the constraint structure, on first and second sides of the first supporting arm.
Abstract: A first electronic component, such as a sensor having opposed first and second surfaces and a first thickness, is arranged on a support member with the second surface facing towards the support member. A second electronic component, such as an integrated circuit mounted on a substrate and having a second thickness less than the first thickness, is arranged on the support member with a substrate surface opposed the second electronic component facing towards the support member. A package molding material is molded onto the support member to encapsulate the second electronic component while leaving exposed the first surface of the first electronic component. The support member is then removed to expose the second surface of the first electronic component and the substrate surface of the substrate.
Abstract: An integrated electronic device includes a semiconductor body and a passivation structure including a frontal dielectric layer bounded by a frontal surface. A conductive region forms a via region, extending into a hole through the frontal dielectric layer. An overlaid redistribution region extends over the frontal surface. A barrier structure includes at least a first barrier region extending into the hole and surrounding the via region. The first barrier region extends over the frontal surface. A first coating layer covers the top and the sides of the redistribution region and a second coating layer covers the first coating layer. A cavity extends between the redistribution region and the frontal surface and is bounded on one side by the first coating layer and on the other by the barrier structure.
Type:
Grant
Filed:
July 24, 2018
Date of Patent:
September 29, 2020
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Francesco Maria Pipia, Ivan Venegoni, Annamaria Votta, Francesca Milanesi, Samuele Sciarrillo, Paolo Colpani
Abstract: A differential current conveyor circuit includes two or more single-ended current conveyor stages and a common bias stage. First and second switches are set between the control terminals of the transistors in the common bias stage and a respective one of a first and a second coupling line of the single ended stages can be switched between the following: a reset state of the circuit with the transistors in the common bias stage coupled to the first and second coupling lines with the single-ended stages set to a bias condition; and a sensing state of the circuit with the transistors in the common bias stage decoupled from the first and second coupling lines, with the single-ended stages in a high impedance state with the control terminals of the input transistors of the single ended stages capacitively coupled to the input terminal.
Type:
Grant
Filed:
October 30, 2017
Date of Patent:
September 29, 2020
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Roberto Pio Baorda, Paolo Angelini, Danilo Karim Kaddouri
Abstract: A circuit includes a first node configured to receive a reset signal. A reset drive stage drives a reset node. The reset drive stage is coupled to the first node via a reset signal path to propagate the reset signal to the reset drive stage. The reset drive stage is activated as a result of assertion of a reset actuation state of the reset signal. A sensing node is coupled to the reset node via a signal sensing path. The sensing node is sensitive to a signal level of the reset node reaching a reset threshold. A reset signal hold circuit block is coupled to the first node and is configured to receive a reset command signal and assert the reset actuation state of the reset signal at the first node as a result of the reset command signal received.
Type:
Grant
Filed:
May 7, 2019
Date of Patent:
September 29, 2020
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Daniele Mangano, Gaetano Di Stefano, Mirko Dondini
Abstract: A pressure sensor is for positioning within a structure. The pressure sensor may include a pressure sensor integrated circuit (IC) having a pressure sensor circuit responsive to bending, and a transceiver circuit coupled to the pressure sensor circuit. The pressure sensor may include a support body having a recess therein coupled to the pressure sensor IC so that the pressure sensor IC bends into the recess when the pressure sensor IC is subjected to external pressure.
Abstract: A driver circuit includes a temperature sensor configured to generate a first voltage representative of current operating temperature of the driver circuit. The driver circuit also includes an amplifier configured to compare the first voltage to a second voltage representative of an upper threshold operating temperature, and to generate a control signal based upon the comparison. A variable current source is configured to generate a load current as a function of the control signal. The amplifier generates the control signal so as to cause the variable current source to generate the load current as having a magnitude equal to an upper threshold, when the first voltage is less than the second voltage.
Abstract: A substrate and a covering structure coupled to the substrate form a chamber. The chamber houses an emitter configured to emit a radiation, a resonant reflector, a detector, and a fixed reflector. First and second windows extend through the covering structure. The emitter, the first reflector and the second reflector are reciprocally arranged such that radiation emitted from the emitter is reflected by the fixed reflector towards the MEMS reflector for further reflection towards the first window to form an output signal. The detector and the second window are reciprocally arranged such that an incoming radiation passing through the second window is received by the detector. The electronic module can be used for a 3D sensing application.
Abstract: A microelectromechanical structure includes a body of semiconductor material having a fixed frame internally defining a cavity, a mobile mass elastically suspended in the cavity and movable with a first resonant movement about a first rotation axis and with a second resonant movement about a second rotation axis, orthogonal to the first axis. First and second pairs of supporting elements, extending in cantilever fashion in the cavity, are rigidly coupled to the frame, and are piezoelectrically deformable to cause rotation of the mobile mass about the first and second rotation axes. First and second pairs of elastic-coupling elements are elastically coupled between the mobile mass and the first and the second pairs of supporting elements. The first and second movements of rotation of the mobile mass are decoupled from one another and do not interfere with one another due to the elastic-coupling elements of the first and second pairs.
Abstract: An energy-harvesting generator provides energy for storage in a capacitor. A sensing circuit senses a voltage across the capacitor and generates an activation signal as a function of the sensed voltage. The activation signal is switches from a first value to a second value when the sensed voltage reaches an upper threshold and switches from the second value to the first value when the sensed voltage reaches a lower threshold. A signal transmitter powered by stored energy in the capacitor responds to the activation signal being switched to the second value by activating and transmitting a transmission signal. The signal transmitter further responds to the activation signal being switched to the first value by discontinuing transmission of the transmission signal and deactivating. A duration of time elapsing between de-activation and activation of the transmitter is indicative of an amount of energy harvested by the energy-harvesting electric generator.
Abstract: A driver circuit includes a supply node, a control node configured to receive a control signal, and an output node. An output transistor is coupled to the output node to provide the CAN bus drive signal via the current path through the output transistor. A current mirror is in a current line from the supply node to the output node through the output transistor. The current line includes an intermediate portion between the current mirror and the output transistor. The current mirror is configured to be switched, as a function of the control signal between a first, dominant mode, with the CAN bus drive signal applied to the output node via the output transistor, and a second, recessive mode, with the output transistor providing a high output impedance at the output node.
Type:
Grant
Filed:
January 16, 2019
Date of Patent:
September 22, 2020
Assignees:
STMICROELECTRONICS S.R.L., STMICROELECTRONICS (GRENOBLE 2) SAS
Abstract: A semiconductor device includes a strain gauge on a substrate, the strain gauge configured to measure a stress of the substrate; and a temperature sensor disposed within the substrate, the temperature sensor being decoupled from the stress of the substrate.