Patents Assigned to Texas Instruments Incorporated
  • Publication number: 20240096761
    Abstract: A packaged integrated circuit (IC) includes a leadframe including a die pad. The packaged IC also includes a first circuit on the die pad, the first circuit having a region. The packaged IC also includes a second circuit on the first circuit, the second circuit being spaced from the region by a gap. The packaged IC also includes an attachment layer between the first and second circuits, the attachment layer and the first and second circuits enclosing at least a part of the gap over the region. The packaged IC also includes a mold compound encapsulating the first and second circuits, the attachment layer, and the at least part of the gap.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 21, 2024
    Applicant: Texas Instruments Incorporated
    Inventors: Barry Jon Male, Paul Merle Emerson, Sandeep Shylaja Krishnan
  • Patent number: 11932529
    Abstract: In described examples, a microelectromechanical system (MEMS) includes a first element and a second element. The first element is mounted on a substrate and has a first contact surface. The second element is mounted on the substrate and has a second contact surface that protrudes from the second element to form an acute contact surface. The first element and/or the second element is/are operable to move in: a first direction, such that the first contact surface comes in contact with the second contact surface; and a second direction, such that the second contact surface separates from the first contact surface.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Patrick Ian Oden, James Carl Baker, Sandra Zheng, William C. McDonald
  • Patent number: 11937292
    Abstract: User equipment (UE)—initiated accesses within a cellular network are optimized to account for cell size and to reduce signaling overhead. A fixed set of preamble parameter configurations for use across a complete range of cell sizes within the cellular network is established and stored within each UE. A UE located in a given cell receives a configuration number transmitted from a nodeB serving the cell, the configuration number being indicative of a size of the cell. The UE selects a preamble parameter configuration from the fixed set of preamble parameter configurations in response to the received configuration number and then transmits a preamble from the UE to the nodeB using the preamble parameter configuration indicated by the configuration number.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pierre Bertrand, Jing Jiang
  • Patent number: 11933844
    Abstract: A test override circuit includes a memory that includes multiple memory instances. A path selector receives a control signal from automatic test pattern generator equipment (ATE) to control data access to data paths that are operatively coupled between the memory instances and a plurality of logic endpoints. The path selector generates an output signal that indicates which of the data paths is selected in response to the control signal. A gating circuit enables the selected data paths to be accessed by at least one of the plurality of logic endpoints in response to the output signal from the path selector.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Wilson Pradeep, Prakash Narayanan
  • Patent number: 11933670
    Abstract: An example apparatus includes: a semiconductor substrate; a mechanical resonator supported by the substrate, the mechanical resonator including an array of capacitors; and a plasmonic infrared (IR) absorber including an array of metal structures. The mechanical resonator is between the substrate and the IR absorber.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bichoy Bahr, Jeronimo Segovia Fernandez, Hassan Omar Ali
  • Patent number: 11933823
    Abstract: An example device includes an analog comparator circuitry having a first input configured to couple to an input voltage and a second input configured to couple to a reference voltage, the analog comparator circuitry configured to output a digital value corresponding to a difference between the input voltage and the reference voltage and output sampler circuitry configured to: produce a plurality of samples of the difference, and count the number of samples in which the input voltage is greater than the reference voltage. The example device also includes reference adaption circuitry configured to: determine, based on the count, whether to adjust the reference voltage; responsive to a determination to adjust the reference voltage, determine, based on the count, an amount of adjustment; and responsive to a determination not to adjust the reference voltage, provide an indication of the reference voltage to processor circuitry.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Veeramanikandan Raju, Anand Kumar G, Aravindhan Karuppiah
  • Patent number: 11936391
    Abstract: In some examples, a circuit includes a phase frequency detector (PFD) having a first input, a second input, and an output. The circuit also includes a control circuit having an input and an output, the control circuit input coupled to the output of the PFD. The circuit also includes a modulation circuit having an input and an output, the modulation circuit input coupled to the output of the control circuit. The circuit also includes an oscillator having an oscillator input and an oscillator output, the oscillator input coupled to the output of the modulation circuit and the output of the oscillator coupled to the second input of the PFD.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Ruediger Kuhn, Maciej Jankowski
  • Patent number: 11933645
    Abstract: Methods and apparatus to determine a position of a rotatable shaft of a motor are disclosed. An example apparatus to determine a position of a rotatable shaft of a motor includes a sensor printed circuit board (PCB) structured to be mounted to a motor, the sensor PCB including a plurality of capacitive sensors, the plurality of capacitive sensors having respective ones of a plurality of capacitances that independently change as a conductor moves relative to the sensor PCB in conjunction with a rotatable shaft of the motor during an operation of the motor, and a controller electrically coupled to the sensor PCB, the controller configured to determine a position of the rotatable shaft based on the plurality of capacitances.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Rujun Ji, Jun Zhang, Lichang Cheng, Kangcheng Xu
  • Patent number: 11933859
    Abstract: In some examples, apparatus comprises a multiplexer (MUX) adapted to be coupled to a set of battery cells and configured to provide a voltage of a different battery cell in the set of battery cells based on a MUX control signal. Apparatus comprises a comparator coupled to the MUX and configured to compare a MUX output signal to a threshold voltage to provide a comparator output signal. Apparatus comprises a digital control circuit configured to provide the MUX control signal to the MUX, to store the comparator output signal, and to use a logic AND gate to provide an AND gate output signal based on the stored comparator output signal.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bradford Lawrence Hunter, Eric Frank Estes, Wallace Edward Matthews
  • Patent number: 11935789
    Abstract: A microelectronic device has a substrate attached to a substrate pad on a first face of the substrate, and a component attached to the substrate on the first face. The substrate has a component placement guide on the first face. The substrate has a singulation guide on a second face of the substrate, located opposite from the first face. The microelectronic device is formed by attaching the component to a substrate sheet which contains the substrate. The substrate sheet with the component is mounted on a singulation film so that the component contacts the singulation film. The singulation guide on the second face of the substrate is located opposite from the singulation film. The substrate is singulated from the substrate sheet. The substrate with the component is attached to the substrate pad on the first face of the substrate, adjacent to the component.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chang-Yen Ko, J K Ho
  • Patent number: 11935821
    Abstract: A device and method for fabrication thereof is provided which results in corrosion resistance of metal flanges (802) of a semiconductor package, such as a quad flat no-lead package (QFN). Using metal electroplating (such as electroplating of nickel (Ni) or nickel alloys on copper flanges of the QFN package), corrosion resistance for the flanges is provided using a process that allows an electric current to reach the entire backside of a substrate (102) to permit electroplating. In addition, the method may be used to directly connect a semiconductor die (202) to the metal substrate (102) of the package.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Nazila Dadvand
  • Patent number: 11933873
    Abstract: One example includes a passive radar receiver system including an RF receiver front-end to receive a wireless source signal and a reflected signal. An antenna switch of the front-end switches a first antenna to a receiver chain during a first time to generate first radar signal data based on a combined wireless signal comprising wireless source signal and the reflected signal, and switches a second antenna to the receiver chain during a second time to generate second radar signal data based on the combined wireless signal. A signal processor generates source signal data associated with the wireless source signal based on the first and second radar signal data and generates reflected signal data associated with the reflected signal based on the first and second radar signal data, and generates target radar data associated with a target based on the source and reflected radar signal data.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yaron Alpert, Matan Ben-Shachar, Anand Ganesh Dabak, Brian Ginsburg
  • Patent number: 11935844
    Abstract: A semiconductor package and a method for forming a semiconductor package are disclosed. The semiconductor package includes a metallic pad and leads, a semiconductor die including a semiconductor substrate attached to the metallic pad, and a conductor including a sacrificial fuse element above the semiconductor substrate, the sacrificial fuse element being electrically coupled between one of the leads and at least one terminal of the semiconductor die, a shock-absorbing material over a profile of the sacrificial fuse element, and mold compound covering the semiconductor die, the conductor, and the shock-absorbing material, and partially covering the metallic pad and leads, with the metallic pad and the leads exposed on an outer surface of the semiconductor package. Either a glass transition temperature of the shock-absorbing material or a melting point of the shock-absorbing material is lower than a melting point of the conductor.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Enis Tuncer
  • Patent number: 11937271
    Abstract: A method of operating a mesh network is disclosed. The method includes joining a network as a child of a parent node and receiving a downlink broadcast channel from the parent node. The method further includes setting the downlink broadcast channel as an uplink broadcast channel in response to the step of receiving.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kumaran Vijayasankar, Ramanuja Vedantham
  • Patent number: 11935740
    Abstract: A semiconductor device including a first dielectric layer and a second dielectric layer is formed by forming an inhibitor layer over a semiconductor material. The inhibitor layer includes at least silicon and nitrogen. The semiconductor material is heated in an oxygen-containing ambient which oxidizes the inhibitor layer and forms the first dielectric layer which includes the oxidized inhibitor layer, and oxidizes the semiconductor material to form the second dielectric layer. The second dielectric layer is thicker than, the first dielectric layer. The first dielectric layer and the second dielectric layer each include at least 90 weight percent silicon dioxide and less than 1 weight percent nitrogen. The first dielectric layer and the second dielectric layer may be used to form gate dielectric layers for a first MOS transistor and a second MOS transistor that operates at a higher voltage than the first MOS transistor.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mark Francis Arendt, Damien Thomas Gilmore
  • Patent number: 11934833
    Abstract: A streaming engine employed in a digital signal processor specifies a fixed read only data stream. Once fetched the data stream is stored in two head registers for presentation to functional units in the fixed order. Data use by the functional unit is preferably controlled using the input operand fields of the corresponding instruction. A first read only operand coding supplies data from the first head register. A first read/advance operand coding supplies data from the first head register and also advances the stream to the next sequential data elements. Corresponding second read only operand coding and second read/advance operand coding operate similarly with the second head register. A third read only operand coding supplies double width data from both head registers.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: March 19, 2024
    Assignee: Texas Instruments Incorporated
    Inventor: Joseph Zbiciak
  • Patent number: 11936325
    Abstract: A motor control system and method for a brushed direct current (BDC) motor using a compensated and corrected ripple count. Motor control circuitry, for example implemented in digital logic such as a microcontroller, receives a coil current signal and a motor voltage signal. Discontinuities in the coil current signal, are counted to generate a ripple count. An observer function derives an angular frequency model estimate using a computational model for the motor applying motor parameters estimated in an initial estimation interval following startup of the motor. A corrected ripple count is generated based on a comparison of a commutation angle of the motor with an angular position based on the angular frequency model estimate. Compensation for cumulative error over the initial estimation interval is derived from a behavioral motor model applying the estimated motor parameters. A motor drive signal is adjusted based on the compensated corrected ripple count.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kaushik Alwala, Venkata Naresh Kotikelapudi
  • Patent number: 11936284
    Abstract: A ripple voltage detector circuit comprises a pulse generator, a direct current-to-direct current (DC-DC) converter coupled to the pulse generator, and a first control loop coupled to the pulse generator and the DC-DC converter. The first control loop is configured to measure an output voltage of the DC-DC converter, determine an output ripple voltage of the output voltage, determine a ripple coefficient based on the output ripple voltage, determine a reference peak inductor current based on the ripple coefficient, and determine a peak value of an inductor current during a switching cycle, and transition a switching state of the DC-DC converter based on the reference peak inductor current and the peak value of the inductor current.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: March 19, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Asif Qaiyum, Ruediger Kuhn, Martin Schneider
  • Patent number: 11936346
    Abstract: A low noise amplifier for an RF sampling analog front end. The amplifier includes digital step attenuation for applying a selected attenuation to signals received at an input node, and a gain stage coupled to amplify the attenuated signal from the digital step attenuation circuit. In a differential amplifier implementation, a first input capacitor is coupled between a positive side input node and an output of the negative side digital attenuation circuit, and a second input capacitor is coupled between a negative side input node and an output of the positive side digital step attenuation circuit. In some embodiments, variable feedback circuits are coupled between each input node and an output of the corresponding gain stage, to selectively apply active termination at the input at high gain settings of the amplifier. Variable input and output resistors, and programmable noise filtering at the output, are provided in some embodiments.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahul Sharma, Jagannathan Venkataraman, Sandeep Oswal, Visvesvaraya Appala Pentakota
  • Patent number: 11936681
    Abstract: An example apparatus includes target signal generator circuitry to generate a target signal having a first center frequency and a bandwidth. The example apparatus additionally includes companion signal generator circuitry to generate a companion signal having a second center frequency that is less than (a) the first center frequency adjusted by a first threshold and greater than (b) the first center frequency adjusted by a second threshold, the first threshold being a first multiple of the bandwidth, the second threshold being a second multiple of the bandwidth, the first multiple different than the second multiple. In some examples, the example apparatus includes adder circuitry to combine the target signal and the companion signal to form a composite signal. Additionally, the example apparatus includes transmitter circuitry to transmit the composite signal to a target device.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 19, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Tomas Motos, Espen Wium