Patents Assigned to University of Washington
  • Publication number: 20230225612
    Abstract: In some embodiments, techniques for using machine learning to enable visible light pupilometry are provided. In some embodiments, a smartphone may be used to create a visible light video recording of a pupillary light reflex (PLR). A machine learning model may be used to detect a size of a pupil in the video recording over time, and the size over time may be presented to a clinician. In some embodiments, a system that includes a smartphone and a box that holds the smartphone in a predetermined relationship to a subject's face is provided. In some embodiments, a sequential convolutional neural network architecture is used. In some embodiments, a fully convolutional neural network architecture is used.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Applicant: University of Washington
    Inventors: Lynn B. McGrath, Anthony Law, Randall Bly, Shwetak N. Patel, Alex T. Mariakakis, Jacob Baudin
  • Patent number: 11697713
    Abstract: Polymers, monomers, chromophoric polymer dots and related methods are provided. Highly fluorescent chromophoric polymer dots with narrow-band emissions are provided. Methods for synthesizing the chromophoric polymers, preparation methods for forming the chromophoric polymer dots, and biological applications using the unique properties of narrow-band emissions are also provided.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: July 11, 2023
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Changfeng Wu, Yu Rong, Yong Zhang, Yi-Che Wu, Yang-Hsiang Chan, Xuanjun Zhang, Jiangbo Yu, Wei Sun
  • Patent number: 11698527
    Abstract: An eye-tracking system, including at least one vertical capacitance sensor, configured to measure the vertical position of a cornea of a user's eye by sensing a position of an eyelid of the user; and at least one horizontal capacitance sensor, configured to measure the horizontal position of the cornea of the user's eye by sensing a position of the user's eyeball.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: July 11, 2023
    Assignee: University of Washington
    Inventors: Jae-Hyun Chung, Vigneshwar Sakthivelpathi, Sang-gyeun Ahn
  • Patent number: 11698364
    Abstract: Cell-separation systems and methods utilizing cell-specific microbubble tags and ultrasound-based separation are described. The methods are useful for simplification of time-consuming and costly cell purification procedures and real time apoptosis detection.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 11, 2023
    Assignee: University of Washington
    Inventors: Thomas J. Matula, Masaoki Kawasumi, Oleg Sapozhnikov
  • Publication number: 20230213360
    Abstract: A capacitive sensor including an electrically conductive material, and a single electrode applied with positive potential, wherein the distance between the single electrode and the electrically conductive material determines the spherical radius for a proximity sensing range.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 6, 2023
    Applicant: University of Washington
    Inventors: Jae-Hyun Chung, Sang-Gyeun Ahn, Tianyi Li, Zhongjie Qian, Vigneshwar Sakthivelpathi
  • Publication number: 20230210816
    Abstract: Methods for inhibiting or treating viral infection in a subject infected with a vims of the arenaviridae family with a therapeutic agent combination: (a) arbidol and aripiprazole; (b) arbidol and amodiaquine; (c) arbidol and sertraline; (d) arbidol, iprazole, and amodiaquine; (e) arbidol, aripiprazole, and sertraline; or (f) aripiprazole and amodiaquine; or pharmaceutically acceptable salts thereof.
    Type: Application
    Filed: May 24, 2021
    Publication date: July 6, 2023
    Applicants: UNIVERSITY OF WASHINGTON, UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Stephen J. Polyak, Shawn Herring, Jessica Wagoner, Judith White
  • Patent number: 11694764
    Abstract: Computational methods used for large scale scaffolding of a genome assembly are provided. Such methods may include a step of applying a location clustering model to a test set of contigs to form two or more location cluster groups, each location cluster group comprising one or more location-clustered contigs; a step of applying an ordering model to each of the two or more location cluster groups to form an ordered set of one or more location-clustered contigs within each cluster group; and a step of applying an orienting model to each ordered set of one or more location-clustered contigs to assign a relative orientation to each of the location-clustered contigs within each location cluster group. In some aspects, the test set of contigs are generated from aligning a set of reads generated by a chromosome conformation analysis technique (e.g., Hi-C) with a draft assembly, a reference assembly, or both.
    Type: Grant
    Filed: September 27, 2014
    Date of Patent: July 4, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Jay Shendure, Andrew Adey, Joshua Burton, Jacob Kitzman, Maitreya J. Dunham, Ivan Liachko
  • Publication number: 20230203462
    Abstract: Provided are compositions and methods for the production of modified endonucleases such as CRISPR/Cas9 system with reduced off-target activity. Methods of editing of polynucleotides using the modified endonucleases in vitro and in vivo are also disclosed. In one aspect, the disclosure provides a modified endonuclease, comprising an endonuclease and one or more mixed charge moieties covalently linked to the endonuclease, wherein each mixed charge moiety comprises about 10 to about 400 positively charged moieties and about 10 to about 400 negatively charged moieties, and wherein the ratio of the number of positively charged moieties to the number of negatively charged moieties is from about 1 :0.5 to about 1 :2.
    Type: Application
    Filed: October 9, 2020
    Publication date: June 29, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Zhedfan Yuan, Shaoyi Jiang, Yanjiao Han, Sijin Luozhong
  • Publication number: 20230201618
    Abstract: Methods for inducing cell death by magneto-endosomalytic therapy using magnetic nano articles. The methods include inducing cell death, inducing cell death in a subject, and application of the methods to killing tumor cells in a subject.
    Type: Application
    Filed: May 21, 2021
    Publication date: June 29, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventor: Xiaohu Gao
  • Publication number: 20230201824
    Abstract: Fluidic device and methods of preparing a fibrous pad comprising dried reagents deposited thereon are described. In an embodiment, the fluidic devices comprise a fibrous pad; and a lyophilized reagent depot configured to support nucleic amplification of a target nucleic acid molecule to produce amplicons when dissolved, wherein the lyophilized reagent depot is disposed on the fibrous pad, the lyophilized reagent depot comprising: a nucleic acid amplification enzyme configured to perform a nucleic acid amplification reaction producing amplicons; and a lyophilization agent.
    Type: Application
    Filed: August 13, 2021
    Publication date: June 29, 2023
    Applicant: University of Washington
    Inventors: Paul Yager, Sujatha Kumar
  • Publication number: 20230203082
    Abstract: Reagents, methods, and kits for assaying enzymes associated with lysosomal storage diseases MPS-I, MPS-II, MPS-IIIA, MPS-IIIB, MPS-IVA, MPS-VI, and MPS VII.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 29, 2023
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael H. Gelb, Arun Babu Kumar, Frances Hocutt, Zdenek Spacil, Mariana Natali Barcenas Rodriguez, Frantisek Turecek, C. Ronald Scott
  • Patent number: 11684707
    Abstract: Apparatus and method for photo-chemical oxidation are disclosed herein. In one embodiment, a system for treating a dialysis fluid includes: a nanostructured photo-electrochemical anode; a source of light configured to illuminate the photo-electrochemical anode; and a cathode that is permeable to oxygen provided to the dialysis fluid and non-permeable to a liquid of the dialysis fluid. The photo-electrochemical anode is configured to remove urea from the dialysis fluid by converting the urea in the dialysis fluid into oxidation products through a photo electrochemical reaction.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: June 27, 2023
    Assignee: University of Washington
    Inventors: Bruce Hinds, Guozheng Shao
  • Publication number: 20230193351
    Abstract: Methods of uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are provided. Kits for uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are also provided. The molecules to be labeled may include, but are not limited to, RNAs, cDNAs, DNAs, proteins, peptides, and/or antigens.
    Type: Application
    Filed: July 25, 2022
    Publication date: June 22, 2023
    Applicant: University of Washington
    Inventors: Georg Seelig, Richard Muscat, Alexander B. Rosenberg
  • Patent number: 11680283
    Abstract: Methods of uniquely labeling or barcoding molecules within a nucleus, a plurality of nuclei, a cell, a plurality of cells, and/or a tissue are provided. Kits for uniquely labeling or barcoding molecules within a nucleus, a plurality of nuclei, a cell, a plurality of cells, and/or a tissue are also provided. The molecules to be labeled may include, but are not limited to, RNAs and/or cDNAs.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 20, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Georg Seelig, Alexander B. Rosenberg, Charles Roco
  • Patent number: 11674964
    Abstract: The present disclosure provides encoded chromophoric polymer particles that are capable of, for example, optical and/or biomolecular encoding of analytes. The present disclosure also provides suspensions comprising a plurality of encoded chromophoric polymer particles. The present disclosure also provides methods of using the encoded chromophoric polymer particles and systems for performing multiplex analysis with encoded chromophoric polymer particles.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: June 13, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. Chiu, Changfeng Wu, Jiangbo Yu
  • Publication number: 20230173459
    Abstract: The present disclosure features a composition, including molecularly imprinted crosslinked polymers that have been imprinted with trimethylamine N-oxide. The molecularly imprinted crosslinked polymers have specific binding sites for trimethylamine N-oxide, and a trimethylamine N-oxide absorption capacity of at least 0.5 mg/g.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 8, 2023
    Applicant: University of Washington
    Inventors: Buddy D. Ratner, Runbang Tang
  • Publication number: 20230175920
    Abstract: A method for predicting if a flow over a smooth ramp surface will separate from the ramp surface, wherein the ramp surface has a slope that is everywhere non-positive along the length of the ramp surface relative to the flow at the inflow end of the ramp surface includes i) dividing the height of the ramp surface by the length of the ramp surface to determine a height-to-length ratio of the ramp surface, ii) identifying a maximum slope magnitude of the ramp surface, iii) calculating a maximum normalized slope by dividing the maximum slope magnitude of the ramp surface by the height-to-length ratio of the ramp surface, and calculating a critical ramp slope as a linear function of the height-to-length ratio of the ramp surface. If the maximum normalized slope is greater than the critical ramp slope, the method predicts the turbulent boundary layer will separate from the ramp surface.
    Type: Application
    Filed: May 18, 2021
    Publication date: June 8, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Antonino Ferrante, Abhiram Aithal, Dawei Lu
  • Patent number: 11667972
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11668713
    Abstract: Methods and systems for improved labeling and/or de-labeling a molecule or cell in the context of scientific experimentation, industrial applications, and clinical investigation, including the means to repeat the process of labeling and de-labeling in an efficient manner.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Daniel T. Chiu, Chun-Ting Kuo, Li Wu
  • Publication number: 20230168198
    Abstract: Systems and methods for detecting a target moiety are disclosed. A system includes a substrate holder including a porous matrix. The porous matrix includes a first detectable agent and a second detectable agent. The system includes a housing, optically coupled with the substrate holder, and shaped to optically couple with a radiation source and a radiation sensor and to optically isolate the radiation source and the radiation sensor. The system includes an excitation filter, disposed in or on the housing, configured to receive excitation electromagnetic radiation from the radiation source and to transmit a first portion of the excitation electromagnetic radiation to the porous matrix. The system also includes an emission filter, disposed in or on the housing, configured to receive emitted fluorescence electromagnetic radiation from the porous matrix and to transmit a second portion of the emitted fluorescence electromagnetic radiation, the second portion being different from the first portion.
    Type: Application
    Filed: August 10, 2021
    Publication date: June 1, 2023
    Applicant: University of Washington
    Inventors: Paul Yager, Kamal Girish Shah