Patents Examined by Ahmed Sefer
  • Patent number: 7531871
    Abstract: A semiconductor element of this invention includes a drift layer of a first conductivity type formed on a semiconductor substrate of the first conductivity type, a well layer of a second conductivity type selectively formed in the surface of the drift layer, a source layer of the first conductivity type selectively formed in the surface of the well layer, a trench formed to reach at least the inside of the drift layer from the surface of the source layer through the well layer, a buried electrode formed in the trench through a first insulating film, and a control electrode formed on the drift layer, the well layer, and the source layer through a second insulating film.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: May 12, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Wataru Saito, Tsuneo Ogura, Hiromichi Ohashi, Yoshihiko Saito, Kenichi Tokano
  • Patent number: 7504655
    Abstract: Multilayer anode structures (104) for electronic devices (100) such as polymer light-emitting diodes are described. The multilayer anodes include a high conductivity organic layer (114) adjacent to the photoactive layer (102) and a low conductivity organic layer (112) between the high conductivity organic layer and the anode's electrical connection layer (110). This anode structure provides polymer light emitting diodes which exhibit high brightness, high efficiency and long operating lifetime. The multilayer anode structure of this invention provides sufficiently high resistivity to avoid cross-talk in passively addressed pixellated polymer emissive displays; the multilayer anode structure of this invention simultaneously provides long lifetime for pixellated polymer emissive displays.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: March 17, 2009
    Assignee: E. I. Du Pont De Nemours & Company
    Inventors: Ian D. Parker, Chi Zhang
  • Patent number: 7504312
    Abstract: An electrical resistor structure overlies a substrate and comprises a composite resistor having a first resistor of relatively low resistance and a second resistor of relatively high resistance overlying the first resistor. First and second electrodes make contact with the composite resistor at spaced locations, and a bond pad overlies the second resistor at a position between the electrodes. A metallized fiber is soldered a to a metal bond pad by providing a stacked resistor structure beneath the bond pad, disposing a solder preform over the bond pad, disposing the metallized fiber over the bond pad, and flowing a current through the stacked resistor structure. The stacked resistor structure, when subjected to a current flowing generally along a first axis, is characterized by a temperature profile that has first and second peaks on either side of the bond pad.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: March 17, 2009
    Assignee: Emcore Corporation
    Inventors: Zequn Mei, Richard D. Bjorn, Frans Kusnadi, John Cameron Major
  • Patent number: 7491593
    Abstract: An exemplary method for fabricating a thin film transistor array substrate (200) includes: providing an insulating substrate (201); coating a transparent conductive layer (202) and a gate metal layer (203) on the substrate; forming a gate electrode (213) and a pixel electrode (212) using a first photo-mask process; forming a gate insulating layer (204), an amorphous silicon layer (205), a doped amorphous silicon layer (206), and a source/drain metal layer (207) on the substrate; forming a plurality of source electrodes (227) and a plurality of drain electrodes (228) using a second photo-mask process; depositing a metal layer (208) on the substrate and the pixel electrodes; and forming a passivation layer (209) on the source electrodes, the drain electrodes and the channels and a plurality of metal contact layers (218) using a third photo-mask process.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: February 17, 2009
    Assignee: Innolux Display Corp.
    Inventor: Yao-Nan Lin
  • Patent number: 7492026
    Abstract: A light sensor located above an integrated circuit including a lower electrode, a heavily-doped amorphous silicon layer of a first conductivity type, and a lightly-doped amorphous silicon layer of a second conductivity type. The lightly-doped amorphous silicon layer rests on a planar surface at least above and in the vicinity of the lower electrode.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 17, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Danielle Thomas, Maurice Rivoire
  • Patent number: 7488982
    Abstract: A method of manufacturing a thin film transistor (TFT) which is manufactured such that source and drain electrodes directly contact source and drain regions without contact holes.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: February 10, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Woo Young So, Kyung Jin Yoo, Sang Il Park
  • Patent number: 7485902
    Abstract: A nitride-based semiconductor light-emitting device capable of improving luminous efficiency by reducing light absorption loss in a contact layer is provided. This nitride-based semiconductor light-emitting device comprises a first conductivity type first nitride-based semiconductor layer formed on a substrate, an active layer, formed on the first nitride-based semiconductor layer, consisting of a nitride-based semiconductor layer, a second conductivity type second nitride-based semiconductor layer formed on the active layer, an undoped contact layer formed on the second nitride-based semiconductor layer and an electrode formed on the undoped contact layer.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: February 3, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Daijiro Inoue, Yasuhiko Nomura, Masayuki Hata, Takashi Kano, Tsutomu Yamaguchi
  • Patent number: 7485932
    Abstract: An accumulation mode FET (ACCUFET) which includes an insulated gate, an adjacently disposed insulated source field electrode, and a source contact that makes Schottky contact with the base region of the ACCUFET.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: February 3, 2009
    Assignee: International Rectifier Corporation
    Inventor: Naresh Thapar
  • Patent number: 7486366
    Abstract: In a liquid crystal display device, liquid crystal molecules are oriented in a vertical direction to the first substrate and the second substrate by the first molecule orientation film and the second molecule orientation film, respectively, in a non-driving state. A structural pattern is formed so as to extend in a first direction parallel to a surface of the liquid crystal layer and so as to form, in a driving state, an electric field periodically changing in a second direction that is parallel to the liquid crystal layer and vertical to the first direction. The liquid crystal molecules substantially tilt in the first direction in the driving state.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: February 3, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shingo Kataoka, Arihiro Takeda, Takahiro Sasaki, Tsutomu Seino, Yoshio Koike, Hidefumi Yoshida, Yuichi Inoue, Kazutaka Hanaoka, Seiji Tanuma, Takatoshi Mayama, Kimiaki Nakamura, Hideo Chida
  • Patent number: 7482656
    Abstract: Methods of forming a self-aligned, selective semiconductor on insulator (SOI) structure and a related structure are disclosed. In one embodiment, a method includes providing a substrate; forming a gate structure over a channel within the substrate; recessing a portion of the substrate adjacent the channel; forming an insulating layer on a bottom of the recessed portion; and forming a semiconductor material above the insulating layer. An upper surface of the semiconductor material may be sloped. A MOSFET structure may include a substrate; a channel; a source region and a drain region adjacent the channel; a gate structure above the channel and the substrate; a shallow trench isolation (STI) distal from the gate structure; a selectively laid insulating layer in at least one of the source region and the drain region; and an epitaxially grown semiconductor material above the selectively laid insulating layer.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Zhijiong Luo, Yung Fu Chong, Kevin K Dezfulian, Huilong Zhu, Judson R Holt
  • Patent number: 7476898
    Abstract: A TFT of the present invention includes a gate electrode, a gate insulating film and a first semiconductor film which are sequentially formed on an insulating substrate, a second semiconductor film including a high density impurity which is formed on the first semiconductor film while being separated into portions at grade and a first electrode and a second electrode, each of which is formed on the separated second semiconductor film. Further, a peripheral portion of the first semiconductor film includes a protruded portion toward the outside from an edge of the second semiconductor film, and a surface of the protruded portion is roughened. By roughening the surface of the protruded portion, an on-current of the TFT can be maintained and the leakage current can be suppressed.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: January 13, 2009
    Assignee: NEC LCD Technologies, Ltd.
    Inventors: Mitsuma Oishi, Masayuki Uehara
  • Patent number: 7476937
    Abstract: A crystalline semiconductor film in which the position and size of a crystal grain is controlled is fabricated, and the crystalline semiconductor film is used for a channel formation region of a TFT, so that a high performance TFT is realized. An island-like semiconductor layer is made to have a temperature distribution, and a region where temperature change is gentle is provided to control the nucleus generation speed and nucleus generation density, so that the crystal grain is enlarged. In a region where an island-like semiconductor layer 1003 overlaps with a base film 1002, a thick portion is formed in the base film 1002. The volume of this portion increases and heat capacity becomes large, so that a cycle of temperature change by irradiation of a pulse laser beam to the island-like semiconductor layer becomes gentle (as compared with other thin portion).
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: January 13, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ritsuko Kawasaki, Kenji Kasahara, Hisashi Ohtani
  • Patent number: 7473930
    Abstract: Method and system for providing a dynamically reconfigurable display having nanometer-scale resolution, using a patterned array of multi-wall carbon nanotube (MWCNT) clusters. A diode, phosphor or other light source on each MWCNT cluster is independently activated, and different color light sources (e.g., red, green, blue, grey scale, infrared) can be mixed if desired. Resolution is estimated to be 40-100 nm, and reconfiguration time for each MWCNT cluster is no greater than one microsecond.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 6, 2009
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Lance D. Delzeit, John F. Schipper
  • Patent number: 7470941
    Abstract: A method for fabricating heterojunction field effect transistors (HFET) and a family of HFET layer structures are presented. In the method, a step of depositing a HFET semiconductor structure onto a substrate is performed. Next, a photoresist material is deposited. Portions of the photoresist material are removed corresponding to source and drain pad pairs. A metal layer is deposited onto the structure, forming source pad and drain pad pairs. The photoresist material is removed, exposing the structure in areas other than the source and drain pad pairs. Each source and drain pad pair has a corresponding exposed area. The structure is annealed and devices are electrically isolated. The exposed area of each device is etched to form a gate recess and a gate structure is formed in the recess. Semiconductor layer structures for GaN/AlGaN HFETs are also presented.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: December 30, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Miroslav Micovic, Mike Antcliffe, Tahir Hussain, Paul Hashimoto
  • Patent number: 7470931
    Abstract: A thin film transistor, and a flat panel display with the same, including a gate electrode, source and drain electrodes, an organic semiconductor layer, and a gate insulating layer. A first capacitance is a capacitance at a first point where the organic semiconductor layer, an electrode, and the gate insulating layer contact one another, a second capacitance is a capacitance at a second point where the organic semiconductor layer contacts the gate insulating layer, a third capacitance is a capacitance at a third point where the electrode contacts the gate insulating layer, and a fourth capacitance is a capacitance at a fourth point where the organic semiconductor layer contacts the electrode. The first capacitance is greater than one of the second capacitance, the third capacitance, and the fourth capacitance.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: December 30, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Bon Koo, Min-Chul Suh, Yeon-Gon Mo
  • Patent number: 7462869
    Abstract: A first semiconductor light emitting device includes: a transparent substrate; a light emitting layer; and a roughened region. The transparent substrate has a first major surface and a second major surface, and is translucent to light in a first wavelength band. The light emitting layer is selectively provided in a first portion on the first major surface of the transparent substrate and configured to emit light in the first wavelength band. The roughened region is provided in a second portion different from the first portion on the first major surface. A second semiconductor light emitting device includes: a transparent substrate; a light emitting layer; a first electrode; and at least one groove. The groove is provided on the second major surface of the transparent substrate and extends from a first side face to a second side face opposing the first side face of the transparent substrate.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: December 9, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichi Ohashi, Yasuhiko Akaike, Hitoshi Sugiyama, Yasuharu Sugawara
  • Patent number: 7462888
    Abstract: The temperature of a bipolar semiconductor element using a wide-gap semiconductor is raised using heating means, such as a heater, to obtain a power semiconductor device being large in controllable current and low in loss. The temperature is set at a temperature higher than the temperature at which the decrement of the steady loss of the wide-gap bipolar semiconductor element corresponding to the decrement of the built-in voltage lowering depending on the temperature rising of the wide-gap bipolar semiconductor element is larger than the increment of the steady loss corresponding to the increment of the ON resistance increasing depending on the temperature rising.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: December 9, 2008
    Assignee: The Kansai Electric Power Co., Inc.
    Inventor: Yoshitaka Sugawara
  • Patent number: 7462913
    Abstract: A semiconductor device includes: a SOI substrate having a SOI layer, a buried oxide layer and a support substrate; multiple first separation trenches on the SOI layer; multiple MOS transistors, each of which is surrounded with one first separation trench; a second separation trench on the SOI layer including n-ply field trenches; and multiple field regions such that a k-th field region is surrounded with a k-th field trench. One MOS transistor is disposed in each field region. The MOS transistors are connected in series. The first MOS transistor has a gate terminal as an input terminal. The n-th MOS transistor is connected to the power source potential through an output resistor. The n-th field region has an electric potential, which is fixed to the power source potential.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 9, 2008
    Assignee: DENSO CORPORATION
    Inventors: Hidetoshi Muramoto, Akira Yamada, Tomohisa Suzuki
  • Patent number: 7462886
    Abstract: The temperature of a bipolar semiconductor element using a wide-gap semiconductor is raised using heating means, such as a heater, to obtain a power semiconductor device being large in controllable current and low in loss. The temperature is set at a temperature higher than the temperature at which the decrement of the steady loss of the wide-gap bipolar semiconductor element corresponding to the decrement of the built-in voltage lowering depending on the temperature rising of the wide-gap bipolar semiconductor element is larger than the increment of the steady loss corresponding to the increment of the ON resistance increasing depending on the temperature rising.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: December 9, 2008
    Assignee: The Kansai Electric Power Co., Inc.
    Inventor: Yoshitaka Sugawara
  • Patent number: 7462877
    Abstract: A nitride-based light emitting device having a light emitting layer between an N-type clad layer and a P-type clad layer is provided. The light emitting device including: a reflective layer which reflects light emitting from the light emitting layer; and at least one metal layer which is formed between the reflective layer and the P-type clad layer.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: December 9, 2008
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: June-o Song, Tae-yeon Seong