Patents Examined by Alexander S Noguerola
  • Patent number: 11125718
    Abstract: A method for operating a nitrogen oxide sensor comprising: sensing a first measurement signal of the nitrogen oxide sensor, the first measurement signal representing a detected voltage between a reference electrode and an external electrode; sensing a second measurement signal representing a measured gas content in a measuring chamber of the nitrogen oxide sensor; comparing the first measurement signal with a predefined first threshold value; and if the first threshold value is exceeded, assigning the second measurement signal to an emission of NH3.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 21, 2021
    Assignee: VITESCO TECHNOLOGIES GMBH
    Inventor: Hong Zhang
  • Patent number: 11119068
    Abstract: The present invention provides, in some embodiments, an isotachophoresis (ITP) apparatus, a kit comprising same and method of use thereof for the focusing analytes of interest from large sample volumes.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: September 14, 2021
    Assignees: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Moran Bercovici, Govind Kaigala, Xander Frank Van Kooten, Nadya Ostromohov, Federico Paratore
  • Patent number: 11119067
    Abstract: The present disclosure relates to a glass electrode including an analyte-sensitive glass membrane, an electrically conductive lead, and an intermediate layer which conductively connects the lead and the glass membrane to one another. According to the present disclosure, the intermediate layer is made of an electron- and/or ion-conducting polymer.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 14, 2021
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Matthaeus Speck, Thomas Wilhelm
  • Patent number: 11098339
    Abstract: A method for testing enzyme based electrochemical sensors wherein an electrochemical sensor is provided. A measurement setup is provided, which is operatively coupled to the electrochemical sensor, providing an output signal Z, e.g. a measured signal current, of the electrochemical sensor; and the electrochemical sensor is suitably contacted with a test solution comprising a certain concentration of the primary analyte. The electrochemical sensor is subjected to a certain swept range of temperatures T; an output signal Z is measured for different temperature values T; a derivative Z? of the output signal Z as a function of temperature T, or inverse temperature 1/T, is determined; and a relative derivate Z?/Z at a temperature T, or inverse temperature 1/T, is determined as the ratio between derivative Z? and output signal Z.
    Type: Grant
    Filed: July 4, 2017
    Date of Patent: August 24, 2021
    Assignee: ROCHE DIABETES CARE, INC.
    Inventor: Herbert Wieder
  • Patent number: 11073494
    Abstract: A trace metal analysis detector and method of operating the same to detect metals in various fluid samples using boron doped diamond working electrodes.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: July 27, 2021
    Assignee: Fraunhofer USA, Inc.
    Inventors: Michael Frank Becker, Thomas Schuelke
  • Patent number: 11073507
    Abstract: Devices for controlling the capture, trapping, and transport of macromolecules include at least one fluidic transport nanochannel that intersects and is in fluid communication with at least one transverse nanochannel with (shallow) regions and/or with integrated transverse electrodes that enable fine control of molecule transport dynamics and facilitates analyses of interest, e.g., molecular identification, length determination, localized (probe) mapping and the like.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: July 27, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, Laurent Menard
  • Patent number: 11067534
    Abstract: There is provided a multi-channel nanopore sensor having a plurality of independent nanopore sensors. Each independent nanopore sensor includes a nanopore disposed in a support structure. A fluidic connection is between a first fluidic reservoir, common to all of the independent nanopore sensors, and an inlet to the nanopore, with a first ionic solution of a first ionic concentration disposed in the first fluidic reservoir. A fluidic connection is between a second fluidic reservoir, common to all of the independent nanopore sensors, and an outlet from the nanopore, with a second ionic solution of a second ionic concentration, different than the first ionic concentration, disposed in the second fluidic reservoir. An electrical transduction element, disposed in contact with that ionic solution having a lower ionic concentration, is arranged at a site that produces an electrical signal indicative of electrical potential local to that ionic solution having a lower ionic concentration.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: July 20, 2021
    Inventors: Charles M. Lieber, Ping Xie
  • Patent number: 11067535
    Abstract: Provided are a fluorescent testing system, a dielectrophoresis device, and a molecular testing method that measure only fluorescence emitted from a test object without separating excitation light and the fluorescence by an optical filter and that are able to prevent reduction of an application range of a type of the fluorescence.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: July 20, 2021
    Assignees: SHARP KABUSHIKI KAISHA, The University of Tokyo
    Inventors: Kunihiko Iizuka, Yoshihisa Fujimoto, Takeshi Mitsunaka, Soo-Hyeon Kim, Teruo Fujii
  • Patent number: 11060995
    Abstract: The present invention provides for a device and method for the rapid detection (within seconds) of viruses and virions (proteins and nucleic acids) found in novel coronavirus (SARS-CoV-2), Human Immunodeficiency Virus (HIV), and other pandemic viruses. The device can be used at front line, hospitals, clinical laboratories, airports, groceries, homes, and the like. The device can be used as a single probe for single use or home use, or the device integrated into a carrousel or multiple probe magazine for fast detection of multiple samples simultaneously. This carrousel would facilitate multiple testing at times of pandemics when a large number of samples have to be tested in short periods of time.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 13, 2021
    Assignee: Texas Tech University System
    Inventors: Gerardine G. Botte, Ashwin Ramanujam
  • Patent number: 11060996
    Abstract: A gas sensor, and a method for measuring the concentrations of a plurality of target components in a gas to be measured are disclosed. The gas sensor is provided with: an oxygen concentration control means for controlling the oxygen concentration in an oxygen concentration adjustment chamber; a temperature control means for controlling the temperature of a sensor element; a condition setting means which sets the oxygen concentration of the oxygen concentration adjustment chamber and/or the temperature of the sensor element to conditions corresponding to the types of target components in the introduced gas to be measured; and a concentration calculation means which calculates the concentrations of the different target components on the basis of the respective sensor outputs obtained under the plurality of conditions corresponding to the types of target components.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 13, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Kunihiko Nakagaki, Dietmar Schmitt
  • Patent number: 11054390
    Abstract: Provided is a device comprising a channel through and defined by a plurality of layers surrounding the channel, the channel connecting a first and a second chambers separated by the plurality of layers, wherein the plurality of layers comprise a first layer, a second layer; and a conductive middle layer disposed between the first and second layers, wherein the channel comprises (a) a first region defined by the first layer, denoted as an inlet, that is about 0.5 nm to about 100 nm in diameter and (b) a second region defined by the second layer, denoted as an outlet, wherein the inlet and the outlet are about 10 nm to about 1000 nm apart from each other, and wherein the first and second chambers and the middle layer are connected to a power supply. Also provided are methods of preparing and using the device, in particular for nucleic acid sequencing.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: July 6, 2021
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: William Dunbar, Holger Schmidt, Aaron Hawkins
  • Patent number: 11054379
    Abstract: The present disclosure relates to biosensors (10) having a receptor layer (5) and a mediator layer (6), the receptor layer including ethylene receptor molecules. The present disclosure also relates to sensor units (20) comprising one or more biosensors (10) and a controller (11). In some embodiments, one or more sensor units (20) may be in wireless communication with a receiver module or a network gateway.
    Type: Grant
    Filed: February 23, 2020
    Date of Patent: July 6, 2021
    Assignee: Strella Biotechnology, Inc.
    Inventor: Katherine Konstantin Sizov
  • Patent number: 11046927
    Abstract: A pH sensor for a single-use container includes a plunger sleeve configured to couple to a flange of the single-use container. A plunger is axially movable within the plunger sleeve between a storage position and an operating position. A pH sensing element coupled to the plunger wherein the pH element is disposed within a storage chamber in the storage position and is configured to be exposed to an interior of the single-use container in the operating position. In one example, a temperature sensitive element is disposed within the pH sensor and configured to sense temperature proximate the pH sensing element. In another example, a lock member is coupled to the plunger, where the lock member has a locked position and an unlocked position, the lock member being configured to inhibit movement of the plunger when in the locked position. In yet another example, the plunger includes at least one filling channel that allows access to a reference fill chamber when the plunger is in a filling position.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 29, 2021
    Assignee: Rosemount Inc.
    Inventors: Jinbo Hu, Andrew S. Dierker, Rick J. Sumrall, Tyrel L. Ruch, John W. Simon, Ryan L. Bowlds
  • Patent number: 11035810
    Abstract: A high-gain and low-noise negative feedback control (“feedback control”) system can detect charge transfer in quantum systems at room temperatures. The feedback control system can attenuate dissipative coupling between a quantum system and its thermodynamic environment. The feedback control system can be integrated with standard commercial voltage-impedance measurement system, for example, a potentiostat. In one aspect, the feedback control system includes a plurality of electrodes that are configured to electrically couple to a sample, and a feedback mechanism coupled to a first electrode of the plurality of electrodes. The feedback mechanism is configured to detect a potential associated with the sample via the first electrode. The feedback mechanism provides a feedback signal to the sample via a second electrode of the plurality of electrodes, the feedback signal is configured to provide excitation control of the sample at a third electrode of the plurality of electrode.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 15, 2021
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Chaitanya Gupta, Ross M. Walker, Boris Murmann, Roger T. Howe
  • Patent number: 11029294
    Abstract: A gas detection apparatus and method for measuring humidity using an electrochemical gas sensor. The gas detection apparatus comprises an electrolyte-based electrochemical gas sensor and a controller configured to measure the average humidity value within an ambient environment over a period of time. The average ambient humidity value over the period of time is determined based on the average rate of change over the period of time of the electrolyte concentration within the electrolyte gas sensor of the gas detection apparatus over the period and the average temperature in the ambient environment over the period of time. The gas sensing apparatus may be configured to communicate the average ambient humidity value within the ambient environment to a second electrochemical gas sensor or a second gas detection apparatus within the same ambient environment.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 8, 2021
    Assignee: Honeywell International Inc.
    Inventors: Keith Pratt, Tom Gurd
  • Patent number: 11029281
    Abstract: This drive screw device is provided with: a drive screw; a drive unit which causes the drive screw to rotate; a slider which moves along the drive screw by means of the rotation of the drive screw; and an external load which is provided on the drive screw and applies a rotational load to the drive screw. By this means it is possible to provide a drive screw device with which there is little pressure variation even if a frictional force varies.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 8, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Katsuhiro Aritome, Ryusuke Kimura, Motohiro Yamazaki, Go Nakajima, Naomichi Kawasaki
  • Patent number: 11022610
    Abstract: An integrated dual-modality microfluidic sensor chip and methods for using the same. In one form, the sensor comprises a patterned periodic array of nanoposts coated with a noble metal and graphene oxide (GO) to detect target biomarker molecules in a limited sample volume. The device generates both electrochemical and surface plasmon resonance (SPR) signals from a single sensing area of the metal-GO nanoposts. The metal-GO nanoposts are functionalized with specific receptor molecules, serving as a spatially well-defined nanostructured working electrode for electrochemical sensing, as well as a nanostructured plasmonic crystal for SPR-based sensing via the excitation of surface plasmon polaritons.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: June 1, 2021
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Liang Dong, Azahar Ali, Shawana Tabassum, Qiugu Wang, Ratnesh Kumar
  • Patent number: 11016078
    Abstract: An electrochemical measurement method is provided in which a working electrode that causes an oxidation-reduction reaction with a measurement target and a counter electrode connected to the working electrode are provided in an electrolytic solution containing the measurement target, and a measuring voltage is applied between the working electrode and the counter electrode to measure a current that flows between the working electrode and the counter electrode in proportion to the amount of the measurement target, wherein an eliminating electrode is provided in the electrolytic solution, and the method performs: eliminating the measurement target by applying an eliminating voltage, which has the same polarity as the measuring voltage, between the eliminating electrode and the counter electrode to oxidize or reduce the measurement target; diffusing a new measurement target; and measuring the current by applying the measuring voltage between the working electrode and the counter electrode.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: May 25, 2021
    Assignees: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, TOHOKU UNIVERSITY
    Inventors: Hiroyuki Hayashi, Ryota Kunikata, Atsushi Suda, Kosuke Ino, Kumi Inoue, Tomokazu Matsue
  • Patent number: 11009480
    Abstract: The disclosure provides for a lab-on-a-chip (LOC) device and a method of fabrication thereof. Additionally, a system and a method for point of care testing of multiple biomarkers such as glucose, cholesterol, creatinine, uric acid, and bilirubin is provided. The microfluidic assembly consists of three layers in which the top and the middle layers are made up of polydimethylsiloxane (PDMS) and the bottom layer with polyethylene terephthalate (PET). The device integrates screen printed non-enzymatic electrochemical sensors in the bottom layer for simultaneous detection of glucose, cholesterol, creatinine, uric acid, and bilirubin. A hand held potentiostat with readout enables readout for the point of care application of integrated sensing device. The device developed has potential to revamp healthcare by providing access to affordable technology for better management a diabetes and related complications at every door step.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: May 18, 2021
    Assignee: AMRITA VISHWA VIDYAPEETHAM
    Inventors: Jeethu Raveendran, Vineeth S Raj, Aarathi Pradeep, Suneesh P Vasu, John Stanley, Bipin Nair, Ramachandran Thiagarajan, Satheesh Babu G Thekkedath
  • Patent number: 11002657
    Abstract: An aerolysin nanopore or a nanotube is used for the electrical detection of peptides, proteins separated by at least one amino acid and other macromolecules such as polysaccharides or synthetic or natural polymers present in a preparation where said nanopore or nanotube is inserted into a lipid membrane which is subjected to a difference in potential greater than ?160 mV, in a reaction medium having an alkali metal halide electrolyte solution with a concentration of less than 6M and at a temperature of less than 40° C., and where said use is intended to differentiate said peptides, proteins and other molecules according to their length and their mass. Application to the sequencing of peptides and other molecules to differentiate them according to their length and mass with an amino acid-level or monomer-level resolution and to medical diagnosis.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 11, 2021
    Assignees: EXCILONE, UNIVERSITÉ DE CERGY PONTOISE, UNIVERSITÉ EVRY VAL D'ESSONNE, ASSISTANCE PUBLIQUE-HÔPITAUX DE PARIS
    Inventors: Juan Pelta, Abdelghani Oukhaled, Philippe Manivet, Fabien Piguet, Hadjer Ouldali, Zuzana Krupova, Pierre Defrenaix