Patents Examined by Belur Keshavan
  • Patent number: 6764921
    Abstract: A semiconductor device of the present invention includes a MISFET provided in an element formation region Re of a semiconductor substrate 11 and a trench isolation 13 surrounding the sides of the element formation region Re. An oxygen-passage-suppression film 23 is provided from the top of the trench isolation 13 to the top of a portion of the element formation region Re adjacent to the trench isolation 13. The oxygen-passage-suppression film 23 is made of a silicon nitride film or the like through which oxygen is less likely to permeate. Therefore, since it becomes hard that the upper edge of the element formation region Re of the semiconductor substrate 11 is oxidized, an expansion of the volume of the upper edge is suppressed, thereby reducing a stress.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 20, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiro Imade, Hiroyuki Umimoto
  • Patent number: 6759307
    Abstract: The present invention provides methods and apparatus related to preventing adhesive contamination of the electrical contacts of a semiconductor device in a stacked semiconductor device package. The methods and apparatus include providing a first semiconductor device with an adhesive flow control dam located on an upper surface thereof. The dam is positioned between electrical contacts and a substrate attach site on the upper surface of the first semiconductor device. The dam is rendered of a sufficient height and shape to block applied adhesive from flowing over the electrical contacts of the first semiconductor device when a second substrate is mounted onto the upper surface of the first semiconductor device. The semiconductor device package may be encapsulated with the dam in place or with the dam removed. The adhesive flow control dam thus protects the electrical contacts of the first semiconductor device from contamination by excess adhesive, which can result in unusable electrical contacts.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: July 6, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Jicheng Yang
  • Patent number: 6730548
    Abstract: A method of fabricating a thin film transistor for liquid crystal display is provided. A polysilicon island and a gate insulating layer covered on the polysilicon island are formed on a substrate. A metal layer is formed on the gate insulating layer. A pair of trenches exposing predetermined regions of the polysilicon island are formed in the metal layer and the gate insulating layer. P-type impurities are doped into the uncovered polysilicon regions of the polysilicon island. A gate electrode is formed by removing parts of the metal layer and the gate insulating layer. N-type impurities are doped into the exposed portions of the polysilicon island. Thereby LDD regions, and a source and a drain regions are formed at the regions doped with both n-type and p-type impurities and at the regions doped with only n-type impurities respectively.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 4, 2004
    Assignee: Au Optronics Corp.
    Inventor: Chien-Sheng Yang
  • Patent number: 6720220
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: April 13, 2004
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 6717199
    Abstract: A method for tailoring properties of high k thin layer perovskite materials, and devices comprising such insulators are herein presented. The method comprise the steps of, first, substantially completing the manufacture of a device, which device contains the high k insulator in a polycrystalline form. The device, such as a capacitor, or an FET, went through the typically high temperature manufacturing process of a fabrication line. In the next step, the device is in situ ion implanted with such a dose and energy to convert a fraction of the polycrystalline material into an amorphous material state, hereby tailoring the properties of the insulator. The fraction of polycrystalline material converted to amorphous material might be 1. This process can be applied to many electronic devices and some optical devices. The process results in novel perovskite thin layer materials and novel devices fabricated with such materials.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Robert Benjamin Laibowitz, John David Baniecki, Johannes Georg Bednorz, Jean-Pierre A. Locquet
  • Patent number: 6709877
    Abstract: There is disclosed an apparatus for supporting singulated electronic devices during a testing operation, comprising: a main body and a support member, wherein said support member is made of non-conducting high-resistivity material and comprises a plurality of recesses, each said recess being adapted to receive an individual singulated device. There is also disclosed a method for testing such devices in which the devices are carried on support members through a testing process including one or more environmental control chambers.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: March 23, 2004
    Assignee: ASM Assembly Automation Limited
    Inventors: Ching Man Stanley Tsui, Eric Chow, Curito M. Bilan, Jr.
  • Patent number: 6699737
    Abstract: Salient electrodes on a semiconductor chip and leads on a film substrate are to be connected together with a high accuracy. A change in lead pitch which occurs at the time of connecting salient electrodes on a semiconductor chip and inner leads on a film substrate with each other is taken into account and a correction is made beforehand to the pitch of the inner leads. Likewise, a change in lead pitch which occurs at the time of connecting electrodes on a liquid crystal substrate and outer leads on the film substrate with each other is taken into account and a correction is made beforehand to the pitch of the outer leads.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: March 2, 2004
    Assignees: Renesas Technology Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Shinji Tojo, Shinya Kanamitsu, Seiichi Ichihara
  • Patent number: 6699741
    Abstract: A high frequency bipolar transistor that has a silicon germanium intrinsic base region is formed in a semiconductor fabrication process that forms the extrinsic base regions after the intrinsic base region has been formed. The extrinsic base regions are epitaxially grown single crystal silicon that is doped during the growth.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: March 2, 2004
    Assignee: National Semiconductor Corporation
    Inventors: Alexei Sadovnikov, Christopher John Knorr
  • Patent number: 6699745
    Abstract: A rugged polysilicon electrode for a capacitor has high surface area enhancement with a thin layer by high nucleation density plus gas phase doping which also enhances grain shape and oxygen-free dielectric formation.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: March 2, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Aditi Banerjee, Rick L. Wise, Darius L. Crenshaw
  • Patent number: 6692982
    Abstract: In an optical semiconductor integrated circuit device in which a vertical pnp transistor and a photodiode are formed, the preferred embodiments of the present invention eliminates difficulty in performance improvement of the two elements. In an illustrative optical semiconductor integrated circuit device, a vertical pnp transistor and a photodiode have been formed, and first and second epitaxial layers and are stacked without doping. This enables a depletion layer forming region to be remarkably increased in the photodiode, and high-speed response becomes possible. Additionally, in the vertical pnp transistor, an n+ type diffusion region surrounds the transistor forming region. This can remarkably improve voltage endurance of the vertical pnp transistor 21.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: February 17, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tsuyoshi Takahashi, Toshiyuki Okoda
  • Patent number: 6693023
    Abstract: In an ion implantation method using an ion implantation equipment having an extraction electrode and a post accelerator, ion is uniformly implanted into a shallow region from the surface of a sample by setting an applied volt. of the post accelerator higher than an applied volt. of the extraction electrode.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: February 17, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Murakoshi, Kyoichi Suguro
  • Patent number: 6664154
    Abstract: An exemplary embodiment relates to a method of using amorphous carbon in replacement gate integration processes. The method can include depositing an amorphous carbon layer above a substrate, patterning the amorphous carbon layer, depositing a dielectric layer over the patterned amorphous carbon layer, removing a portion of the deposited dielectric layer to expose a top of the patterned amorphous carbon layer, removing the patterned amorphous carbon layer leaving an aperture in the dielectric layer, and forming a metal gate in the aperture of the dielectric layer.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 16, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Scott A. Bell, Srikanteswara Dakshina-Murthy, Philip A. Fisher, Cyrus E. Tabery
  • Patent number: 6656826
    Abstract: A semiconductor device has a fuse to be blown with an energy beam. The semiconductor device has copper wiring levels formed on a semiconductor substrate on which semiconductor elements are formed, an uppermost wiring level formed on said copper wiring levels and including a refractory metal film connected to a top one of the copper wiring levels, the fuse formed from a part of the uppermost wiring level, and a surface protective film formed on the uppermost wiring level.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazunari Ishimaru
  • Patent number: 6642592
    Abstract: A semiconductor device and method for fabricating the same which improves reliability of the semiconductor device is disclosed. The semiconductor device includes: a first insulating film and a gate electrode sequentially formed on a part of a semiconductor substrate; a first insulating spacer formed at both sides above the gate electrode; a second insulating spacer formed at both sides below the gate electrode; and a cobalt silicide film formed on a surface of the gate electrode at a predetermined depth.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: November 4, 2003
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Jong Uk Bae, Ji Soo Park, Bong Soo Kim
  • Patent number: 6624462
    Abstract: A Pt/Ti film is formed on a substrate, and the Pt/Ti film is patterned in to a bottom electrode. Subsequently, a SrTiO3film, that is, a dielectric film, is formed on the substrate by sputtering using a mixture of an Ar gas, an O2 gas and a N2 gas as a film forming gas. The SrTiO3 film is patterned into a capacitor dielectric film formed on the bottom electrode. A top electrode is then formed on the capacitor dielectric film. Since a N2 gas is used as the film forming gas in addition to an Ar/O2 gas, a SrTiO3 film with a high dielectric constant and small leakage can be formed at a low temperature. By using this SrTiO3 film, a thin film capacitor with high capacitance and good dielectric characteristics can be obtained.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: September 23, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Naoki Kohara, Taisuke Sawada, Masatoshi Kitagawa, Takeshi Uenoyama
  • Patent number: 6624043
    Abstract: A metal gate complementary metal oxide semiconductor (CMOS) and a method of manufacturing the same is disclosed. The method includes depositing the metal gate electrode material as a final step before metallization of the device. Accordingly, the metal gate material is not subject to contamination during the fabrication process. The device is fabricated without the use of oxide spacers so that the finished device does not suffer from silicon faceting at the active silicon-to-shallow-trench-isolation-interface. Moreover, the dummy gate material is used to define planarization stops that allow precise planarization of the device during fabrication.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: September 23, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Sheng Teng Hsu
  • Patent number: 6573179
    Abstract: A strong interface is formed between an interconnect and an encapsulating layer to prevent the lateral drift of material from the interconnect along the bottom of the encapsulating layer. Diffusion barrier material is deposited on the top surface of the interconnect using a selective deposition process. The diffusion barrier material may be epitaxially grown from the interconnect during the selective deposition of the diffusion barrier material on the top surface of the interconnect to promote adhesion of the diffusion barrier material to the interconnect. An encapsulating layer is deposited on top of the diffusion barrier material. The diffusion barrier material and the encapsulating layer are comprised of a similar chemical element to promote adhesion of the diffusion barrier material to the encapsulating layer. The diffusion barrier material on the top surface of the interconnect prevents lateral drift of material comprising the interconnect along the encapsulating layer.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: June 3, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Pin-Chin C. Wang, Lu You
  • Patent number: 6569728
    Abstract: A method for forming a capacitor by stacking impurity-doped polysilicon layers having different concentrations to form a bottom electrode, treating surfaces of the bottom electrode to prevent a low dielectric constant material from being generated on the surface of the bottom electrode, and forming a dielectric layer and a top electrode on the bottom electrode.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Tae-Hyeok Lee, Seung-Woo Jin, Hoon-Jung Oh
  • Patent number: 6569757
    Abstract: A method of forming a co-axial interconnect line in a dielectric layer is provided. The method includes defining a trench in the dielectric layer and then forming a shield metallization layer within the trench. After forming the shield metallization layer, a conformal oxide layer is deposited within the shield metallization layer. A center conductor is then formed within the conformal oxide layer. Once the center conductor is formed, a fill oxide layer is deposited over the center conductor. A cap metallization layer is then formed over the fill oxide layer and is in contact with the shield metallization layer.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: May 27, 2003
    Assignee: Philips Electronics North America Corporation
    Inventors: Milind Weling, Subhas Bothra, Calvin Todd Gabriel, Michael Misheloff
  • Patent number: 6537902
    Abstract: A material layer which contains nitrogen atoms is formed on a first wiring or at a side surface of a first wiring. When etching for forming a via hole is carried out, nitrogen atoms contained in the material layer bind with CF molecules, CF2 molecules, CF3 molecules and the like contained in an etching gas, and compounds thus formed adhere to a surface of a silicon dioxide layer at side walls and a bottom portion of a via hole. As a result, once the material layer is exposed during etching for forming a hole, thereafter, the etching rate decreases. Accordingly even if there is misalignment of a via hole pattern with respect to a first wiring pattern when the via hole pattern is formed by lithography, etching of the silicon dioxide layer does not proceed to an underlying silicon substrate. Thus, short circuits are not formed between the first wiring and the silicon substrate via a second wiring layer which is deposited later.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: March 25, 2003
    Assignee: Oki Electric Industry Co, Ltd.
    Inventor: Toshiyuki Orita