Patents Examined by Belur Keshavan
  • Patent number: 6537843
    Abstract: A thin film transistor is disclosed, including an insulating substrate, a semiconductor layer formed on the insulating substrate, the semiconductor layer having an active region and an impurity region, a gate insulating layer formed on the active region of the semiconductor layer, a first gate metal layer formed on a predetermined portion of the active region of the semiconductor layer to define a channel region, and a second gate metal layer formed on the first gate metal layer. The first and second gate metal layers have different compositions, such that the second gate metal layer etches faster than the first gate metal layer, thereby preventing formation of a hillock. A first protective layer is formed over the structure, then a light shielding layer, and then a second protective layer is formed over the light shielding layer.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: March 25, 2003
    Assignee: LG.Philips LCD Co., LTD
    Inventors: Ki-Hyun Lyu, Kwang-Jo Hwang
  • Patent number: 6521473
    Abstract: The present invention relates to a method of fabricating a liquid crystal display panel that involves patterning a silicon film crystallized by sequential lateral solidification. The method comprises the steps of preparing a silicon film, crystallizing the silicon film by growing silicon grains on a slant with respect to a horizontal direction of the silicon film, and forming a driver and a pixel part using the crystallized silicon film wherein the driver and pixel part comprise devices having channels arranged in horizontal and perpendicular directions relative to the silicon film. The crystallized silicon film has uniform grain boundaries in the channels of the devices, thereby improving the products by providing uniform electrical characteristics of devices that comprise a driver and a pixel part of an LCD panel.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: February 18, 2003
    Assignee: LGPhilips LCD Co., Ltd.
    Inventor: Yun-Ho Jung
  • Patent number: 6518153
    Abstract: A method of making embedded DRAM devices having integrated therein a gate electrode of low sheet resistance satisfying the requirement of high performance logic circuitry is provided. The gate electrode on a semiconductor substrate comprises a gate oxide film, a polysilicon film, a metal, a lightly doped diffusion layer, silicon dioxide spacers, and a source/drain diffusion layer. The metal is planted in an opening, where a capped silicon nitride used to occupy, on top the polysilicon film.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: February 11, 2003
    Assignee: Nanya Technology Corporation
    Inventors: Chi-hui Lin, Chung Lin Huang
  • Patent number: 6512265
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: January 28, 2003
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 6498105
    Abstract: A method of forming fine patterns of semiconductor devices comprises patterning one material layer using at least two sub-photomasks. The material layer is formed on a semiconductor substrate, and the material layer is patterned at least twice using each of the sub-photomasks. The shapes and sizes of the patterns on one sub-photomask are different to those of the other sub-photomask, and the patterns of one sub-photomask may partially overlap those of the other sub-photomask. The profiles of all patterns formed on the one material layer can thereby be optimized.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: December 24, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ki-Joan Kim
  • Patent number: 6495409
    Abstract: An MOS transistor comprising a substrate, a source, a drain, and a gate, wherein the gate comprises aluminum nitride. Aluminum nitride is epitaxially grown on the silicon substrate at a substrate temperature of about 600° C. and subsequently annealed at a substrate temperature of about 950° C.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: December 17, 2002
    Assignee: Agere Systems Inc.
    Inventors: Michael J. Manfra, Loren N. Pfeiffer, Kenneth W. West, Yiu-Huen Wong
  • Patent number: 6492187
    Abstract: A method and apparatus of assembling and disassembling semiconductor dice to be tested from the components of a temporary test package. A computer-controlled vision system is employed to align the dice with the temporary test package bases, and an automated robot arm system is employed to retrieve and assemble the dice with the various package components. The invention has particular utility in the burn-in and other pre-packaging testing of dice to establish known good dice (KGD).
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: December 10, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Alan G. Wood, John O. Jacobson, David R. Hembree, James M. Wark, Jennifer L. Folaron, Robert J. Folaron, Jay C. Nelson, Lelan D. Warren
  • Patent number: 6455404
    Abstract: A semiconductor device and method for fabricating the same which improves reliability of the semiconductor device is disclosed. The semiconductor device includes: a first insulating film and a gate electrode sequentially formed on a part of a semiconductor substrate; a first insulating spacer formed at both sides above the gate electrode; a second insulating spacer formed at both sides below the gate electrode; and a cobalt silicide film formed on a surface of the gate electrode at a predetermined depth.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: September 24, 2002
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Jong Uk Bae, Ji Soo Park, Bong Soo Kim
  • Patent number: 6429043
    Abstract: A compact semiconductor circuitry device capable of providing a high production efficiency and of shortening time required for packaging and a method for manufacturing a same are provided. A terminal supplying tape having a metal thin film member mounted, on a base material film, in a same arrangement pattern as for a chip terminal of a semiconductor chip and in a state in which it can be peeled off, is prepared in advance. The terminal supplying tape and the semiconductor chip are so disposed as to face each other. The metal thin film member of the terminal supplying tape is connected to the chip terminal, with the terminal supplying tape remaining fixed on the base material film. Then, the base material film is peeled off. An underfill is mounted as necessary. A resin molded portion is also mounted.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: August 6, 2002
    Assignee: NEC Corporation
    Inventors: Taibo Nakazawa, Koki Hirasawa
  • Patent number: 6426256
    Abstract: A method for manufacturing an embedded DRAM with self-aligned borderless contacts is provided. The method comprises providing a substrate having a first device region and a second device region. The first device region comprises a first transistor and the second device region has a second transistor. A silicide block layer is formed over the second device region. An etching stop layer covers all device regions. A mask layer covers the first device region. Then the etching stop layer not covered by the mask layer is removed. A first dielectric material layer is formed on all the device regions and therein a first contact window is on the second device region. A second dielectric material layer is next formed and therein a second contact window is on the second device region. A third dielectric material layer is formed and therein at least a third contact window is coupled to the first transistor of the first device region.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 30, 2002
    Assignee: United Microelectronics Corp.
    Inventor: Tung-Po Chen
  • Patent number: 6406945
    Abstract: A method for forming a gate dielectric having regions with different dielectric constants. A dummy dielectric layer is formed over a semiconductor structure. The dummy dielectric layer is patterned to form a gate opening. A high-K dielectric layer is formed over the dummy dielectric and in the gate opening. A low-K dielectric layer is formed on the high-K dielectric layer. Spacers are formed on the low-K dielectric layer at the edges of the gate opening. The low-K dielectric layer is removed from the bottom of the gate opening between the spacers. The spacers are removed to form a stepped gate opening. The stepped gate opening has both a high-K dielectric layer and a low-K dielectric layer on the sidewalls and at the edges of the bottom of the gate opening and only a high-k dielectric layer in the center of the bottom of the stepped gate opening. A gate electrode is formed in the stepped gate opening.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: June 18, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: James Yong Meng Lee, Ying Keung Leung, Yelehanka Ramachandramurthy Pradeep, Jia Zhen Zheng, Lap Chan, Elgin Quek, Ravi Sundaresan, Yang Pan
  • Patent number: 6403452
    Abstract: In an ion implantation method using an ion implantation equipment having an extraction electrode and a post accelerator, ion is uniformly implanted into a shallow region from the surface of a sample by setting an applied volt. of the post accelerator higher than an applied volt. of the extraction electrode.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: June 11, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Murakoshi, Kyoichi Suguro
  • Patent number: 6362035
    Abstract: A method for incorporating an ion implanted channel stop layer under field isolation for a twin-well CMOS process is described in which the layer is placed directly under the completed field isolation by a blanket boron ion implant over the whole wafer. The channel stop implant follows planarization of the field oxide and is thereby essentially at the same depth in both field and active regions. Subsequently implanted p- and n-wells are formed deeper than the channel stop layer, the n-well implant being of a sufficiently higher dose to over compensate the channel stop layer, thereby removing it's effect from the n-well. A portion of the channel stop implant under the field oxide adjacent the p-well provides effective anti-punchthrough protection with only a small increase in junction capacitance. The method is shown for, and is particularly effective in, processes utilizing shallow trench isolation.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: March 26, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jiaw-Ren Shih, Shui-Hung Chen, Jian-Hsing Lee, Hsien-Chin Lin
  • Patent number: 6335235
    Abstract: Isolation regions are formed with greater accuracy and consistency by forming an oxide-silicon nitride stack and then depositing an amorphous silicon antireflective layer, on the silicon nitride layer before patterning. Embodiments also include depositing the silicon nitride layer and the amorphous silicon layer in the same tool.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: January 1, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jayendra D. Bhakta, Carl P. Babcock
  • Patent number: 6333222
    Abstract: In the method of manufacturing the DRAM mixed logic memory, first, a pattern of one gate electrode is formed, and then a pattern of another gate electrode is formed. A step of oxidizing a polycrystalline silicon residue is performed thereafter. Therefore, the polycrystalline silicon residue is prevented from being left and prevention of electric short circuit is allowed.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: December 25, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Masashi Kitazawa, Masayoshi Shirahata, Kazunobu Ohta
  • Patent number: 6312967
    Abstract: A semiconductor device such as a light emitting semiconductor device comprising a mask layer having opening areas and a selective growing layer comprising a semiconductor grown selectively by way of the mask layer, with each of the mask layer and the selective growing layer being disposed by two or more layers alternately. The semiconductor device is manufactured by a step of laminating on a substrate a mask layer having opening areas and a selective growing layer comprising a semiconductor grown selectively way of a mask layer, each by two or more layers alternately and a subsequent step of laminating semiconductor layers thereon. Threading dislocations in the underlying layer are interrupted by the first mask layer and the second mask layer and do not propagate to the semiconductor layer. The density of the threading dislocations is lowered over the entire surface and the layer thickness can be reduced.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: November 6, 2001
    Assignee: Sony Corporation
    Inventor: Masao Ikeda
  • Patent number: 6307231
    Abstract: In a method of fabricating a semiconductor device having a MISFET of trench gate structure, a trench is formed from a major surface of a semiconductor layer of first conductivity type which serves as a drain region, in a depth direction of the semiconductor layer, a gate insulating film including a thermal oxide film and a deposited film is formed over the internal surface of the trench, and after a gate electrode has been formed in the trench, impurities are introduced into the semiconductor substrate of first conductivity type to form a semiconductor region of second conductivity type which serves as a channel forming region, and impurities are introduced into the semiconductor region of second conductivity type to form the semiconductor region of first conductivity type which serves as a source region.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: October 23, 2001
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Sumito Numazawa, Yoshito Nakazawa, Masayoshi Kobayashi, Satoshi Kudo, Yasuo Imai, Sakae Kubo, Takashi Shigematsu, Akihiro Ohnishi, Kozo Uesawa, Kentaro Oishi
  • Patent number: 6294479
    Abstract: A method and apparatus for radiation of ions from an ion source 4 onto a surface of an objective substrate T and vacuum evaporation of a predetermined material from an evaporation source 5 onto the surface of the substrate, simultaneously while the substrate is continuously moved. The ion radiation from the ion source 4 is applied to a portion of a region reached by the evaporation material from the evaporation source 5, upstream relative to the direction of movement of the substrate from the center of that region and which is lower in evaporation speed than the center of the region, to thereby continuously form a mixture layer of substrate material atoms and evaporation material atoms on the surface of the substrate and then continuously form a vacuum evaporation film with a predetermined thickness on the mixture layer.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: September 25, 2001
    Assignee: Nissin Electric Co., LTD
    Inventors: Akinori Ebe, Satoshi Nishiyama, Kiyoshi Ogata, Yasuo Suzuki
  • Patent number: 6294436
    Abstract: In accordance with the present invention, a method for expanding holes for the formation of stacked capacitors is described and claimed. The method includes the steps of providing a planarized dielectric layer for forming bottom electrodes of the stacked capacitors, forming a first dielectric layer on the planarized dielectric layer, forming a second dielectric layer on the first dielectric layer. The second dielectric layer is selectively etchable relative to the first dielectric layer. The steps of etching the second dielectric layer to form holes for forming the bottom electrodes and isotropically etching the second dielectric layer to expand the holes for forming the bottom electrodes are also included.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: September 25, 2001
    Assignee: Infineon Technologies AG
    Inventors: Youngjin Park, Heon Lee
  • Patent number: 6291887
    Abstract: A method of forming a dual damascene structure in a semiconductor device arrangement forms a first low k dielectric material over an underlying metal interconnect layer, such as a copper interconnect layer. A nitride etch stop layer is formed on the first low k dielectric layer, and a second low k dielectric layer is formed on the nitride etch stop layer. A via is etched into the first low k dielectric layer, and a trench is then etched into the second low k dielectric layer. The first and second low k dielectric materials are different from one another so that they have different sensitivity to at least one etchant chemistry. Undercutting in the first dielectric layer is thereby prevented during the etching of the trench in the second dielectric layer by employing an etch chemistry that etches only the second low k dielectric material and not the first low k dielectric material.
    Type: Grant
    Filed: January 4, 1999
    Date of Patent: September 18, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Fei Wang, Jerry Cheng, Todd Lukanc