Patents Examined by Bradford Gates
  • Patent number: 9115261
    Abstract: Shaped article substrates, e.g., plastics, textiles, extrudates, films, etc., having silicone material coverings adhered thereto, are delaminated by treating same with an aqueous solution containing an alkali metal or alkaline earth metal hydroxide and a phase transfer catalyst; particular such shaped article substrates are airbag type of inflatable protection bags having layers of silicone elastomer adhered thereto and used for the protection of the occupants of a motor vehicle.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: August 25, 2015
    Assignee: RHODIA OPERATIONS
    Inventor: GĂ©rard Mignani
  • Patent number: 9102119
    Abstract: A device including a protecting material encapsulated metallic beam and a method of encapsulating the metallic beam using the protecting material layer are presented. The device includes a cantilever beam that includes at least about 90 Wt % of a metallic beam material, and 10 Wt % or less of a protecting material. The method of forming an encapsulated metallic beam includes the steps of depositing a first layer of protecting material over a substrate, depositing a second layer of protecting material over the first layer, depositing a metallic beam material over the second layer of protecting material, and encapsulating the beam material with a coating of the protecting material.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventor: Oliver Charles Boomhower
  • Patent number: 9099284
    Abstract: A reactive correction to chamber impedance changes without the need to change the process recipe is disclosed. The reactive correction may be done automatically and repeatedly during processing. A control of RF power application to a plasma processing chamber is performed, so as to minimize reflected power and efficiently apply the RF power to the plasma. Autotuning of the RF power application is enabled without modifying a qualified process recipe. The autotuning can be applied using frequency matching and RF matching network tuning.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: August 4, 2015
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT, INC. ASIA
    Inventors: James Yang, Stanley Liu, ZhaoHui Xi
  • Patent number: 9096050
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a substrate, the spreading layer having a monolayer. A stressor layer is formed on the spreading layer, and the stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein the closest monolayer remains on the stressor layer.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Christos D. Dimitrakopoulos, Keith E. Fogel, James B. Hannon, Jeehwan Kim, Hongsik Park, Dirk Pfeiffer, Devendra K. Sadana
  • Patent number: 9085152
    Abstract: Piezoelectric material is shaped by plasma etching to form deep features with high aspect ratios, and desired geometries.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: July 21, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Jeffrey Birkmeyer, Youming Li
  • Patent number: 9084342
    Abstract: A manufacturing method of a circuit board is provided. Providing a substrate, where a first laser resistant structure is disposed on a first dielectric layer and at the periphery of a pre-removing area, a second dielectric layer covers the first laser resistant structure, a circuit layer is disposed on the second dielectric layer, a second laser resistant structure is disposed on the second dielectric layer and at the periphery of the pre-removing area, a third dielectric layer covers the circuit layer and the second laser resistant structure. There are gaps between the second laser resistant structure and the circuit layer, and the vertical projection of the gaps on the first dielectric layer overlaps the first laser resistant structure. A laser machining process is performed to etch the third dielectric layer at the periphery of the pre-removing area. The portion of the third dielectric layer within the pre-removing area is removed.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 14, 2015
    Assignee: Unimicron Technology Corp.
    Inventor: Chen-Chuan Chang
  • Patent number: 9074055
    Abstract: An approach is provided for manufacturing a nanostructure. A first thin film including a first block copolymer is formed on a substrate. A guide pattern is formed on the first thin film. A second thin film including a second block copolymer is formed between portions of the guide pattern. The second thin film is cured. The first block copolymer is a cylinder-type and the second block copolymer is a lamella-type.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: July 7, 2015
    Assignees: Samsung Display Co., Ltd., Korea University Research and Business Foundation
    Inventors: Eun-Ae Kwak, Min-Hyuck Kang, Su Mi Lee, Jun Han Lee, Moon Gyu Lee, Joona Bang, Hyun Jung Jung
  • Patent number: 9068112
    Abstract: Disclosed is a method, process, solar cell design, and fabrication technology for high-efficiency, low-cost, crystalline silicon (Si) solar cells including but not restricted to solar grade single crystal Si (c-Si), multi-crystalline Si (mc-Si), poly-Si, and micro-Si solar cells and solar modules. The RTWCG solar cell fabrication technology creates a RTWCG SiOx thin film antireflection coating (ARC) with a graded index of refraction and a selective emitter (SE). The resulting top surface of the SiOx oxide can be textured (TO) concomitant with the growth process or through an additional mild wet chemical step.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: June 30, 2015
    Assignee: SPECMAT, Inc.
    Inventors: Maria Faur, Horia M. Faur, Mircea Faur
  • Patent number: 9063043
    Abstract: A chromium-free etching composition suitable for treating various silicon-containing surfaces, including strained silicon on insulator surfaces as well as stressed silicon surfaces. The etching composition invention includes hydrofluoric acid, nitric acid, acetic acid and an alkali iodide, preferably potassium iodide, present in an amount of 1 mmol/100 ml or more.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: June 23, 2015
    Assignee: SOITEC
    Inventors: Alexandra Abbadie, Bernd Kolbesen, Jochen Maehliss
  • Patent number: 9057134
    Abstract: A material mixture for dissolving a coating system from a work piece comprises an aqueous, alkaline solution containing between 3 and 8 weight percent KMnO4 and at the same time having an alkaline fraction of between 6 and 15 weight percent. The alkaline fraction is formed in one embodiment by KOH or NaOH, wherein the pH of the solution is above 13. A method according to the present invention uses the above-described material mixture for wet-chemical delaminating of hard material coatings of the group: metallic AlCr, TiAlCr and other AlCr alloys; nitrides, carbides, borides, oxides thereof and combinations thereof.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: June 16, 2015
    Assignee: OERLIKON SURFACE SOLUTIONS AG, TRUBBACH
    Inventors: Tamara Andreoli, Udo Rauch
  • Patent number: 9059184
    Abstract: A method and system for decapsulating a portion of an encapsulated integrated circuit delivers etchant mixture in variable but precise, high-velocity micro-metered pulses to a single outlet port of a pump from any one of or a combination of separate inlet ports connected to separate etchant source containers holding specific etchant solutions, controls temperature of the etchant mixture by passing the etchant mixture from the outlet port through a serpentine passage in a temperature-controlled metal block, and delivers the etchant mixture from the serpentine passage of the temperature-controlled block via a delivery conduit to an encapsulation surface of the encapsulated integrated circuit.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 16, 2015
    Assignee: RKD Engineering Corporation
    Inventor: Kirk Alan Martin
  • Patent number: 9050752
    Abstract: An imprint method according to this embodiment includes preparing a mold having a recessed portion, filling the recessed portion with a mold non-reactive material, pressing the mold against a resist which is applied on a base material, curing the resist in a state that the mold is pressed, and separating the mold from the base material. The mold non-reactive material is a material which does not chemically react with a material of the mold. By curing of the resist, the resist and the mold non-reactive material are coupled. When the mold is separated from the base material, the resist and the mold non-reactive material are left on the base material.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: June 9, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuaki Ootera, Yoshiyuki Kamata, Naoko Kihara, Yoshiaki Kawamonzen
  • Patent number: 9048194
    Abstract: Methods for circuit material processing are provided. In at least one such method, a substrate is provided with a plurality of overlying spacers. The spacers have substantially straight inner sidewalls and curved outer sidewalls. An augmentation material is formed on the plurality of spacers such that the inner or the outer sidewalls of the spacers are selectively expanded. The augmentation material can bridge the upper portions of pairs of neighboring inner sidewalls to limit deposition between the inner sidewalls. The augmentation material is selectively etched to form a pattern of augmented spacers having a desired augmentation of the inner or outer sidewalls. The pattern of augmented spacers can then be transferred to the substrate through a series of selective etches such that features formed in the substrate achieve a desired pitch.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: June 2, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventor: Hongbin Zhu
  • Patent number: 9028704
    Abstract: A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Takizawa, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Patent number: 9023221
    Abstract: A method of forming a multi-layer graphene includes forming a stack of a graphitizing metal catalyst layer and graphene by repeatedly performing a cycle of first forming the graphitizing metal catalyst layer on a substrate, and then forming the graphene on the graphitizing metal catalyst layer, and removing the graphitizing metal catalyst layer.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-sung Woo, Jae-young Choi, Won-mook Choi, Hyeon-jin Shin, Seon-mi Yoon
  • Patent number: 9023226
    Abstract: The present disclosure provides a method for manufacturing a particle source comprising: placing a metal wire in vacuum, introducing active gas, adjusting a temperature of the metal wire and applying a positive high voltage V to the metal wire to generate at a side of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than a field evaporation electric field of material for the metal wire, so that metal atoms at the top of the metal wire are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: May 5, 2015
    Assignee: 38th Research Institute, China Electronics Technology Group Corporation
    Inventors: Huarong Liu, Ping Chen
  • Patent number: 9017562
    Abstract: The present disclosure provides a method for manufacturing a particle source, comprising: placing a metal wire in vacuum, introducing active gas and catalyst gas, adjusting a temperature of the metal wire, and applying a positive high voltage V to the metal wire to dissociate the active gas at the surface of the metal wire, in order to generate at a peripheral surface of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than the to evaporation field of the material for the metal wire, so that metal atoms at the wire apex are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 28, 2015
    Assignee: 38th Research Institute, China Electronics Technology Group Corporation
    Inventor: Huarong Liu
  • Patent number: 9005457
    Abstract: The present invention relates to a counter electrode for DSSC which includes a porous membrane include a carbon-based material calcinated at high temperature and a platinum nano-particles and maintains higher conductivity than a thin membrane and in which the electrolyte moves smoothly, a method of preparing the same, and a DSSC using the same which is improved in photoelectric efficiency.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 14, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Min-Jae Ko, Ki-Cheon Yoo, Hong-Gon Kim, Doh-Kwon Lee, Bong-Soo Kim, Kyung-Kon Kim
  • Patent number: 8999187
    Abstract: A method for manufacturing a device on a substrate includes forming a layer structure on the substrate, forming an auxiliary layer on the layer structure, forming a planarization layer on the auxiliary layer and on the substrate, exposing the auxiliary layer by a chemical mechanical polishing process and removing at least partly the auxiliary layer to form a planar surface of the remaining auxiliary layer or of the layer structure and the planarization layer. The chemical mechanical polishing process has a first removal rate with respect to the planarization layer and a second removal rate with respect to the auxiliary layer and the first removal rate is greater than the second removal rate.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 7, 2015
    Assignee: Infineon Technologies AG
    Inventors: Sandra Obernhuber, Christof Jalics, Joerg Adler, Uwe Hoeckele, Walter Preis, Reinhard Goellner, Tanja Ippisch, Patricia Nickut
  • Patent number: 8986563
    Abstract: A method for producing three-dimensional microstructures in which a source material is applied on a substrate, with a property changing by exposure with electromagnetic radiation. A three-dimensional source structure is written via spatially-resolving exposure in the source material, the source material is removed except for the source structure, and the source structure is molded with a target material, from which the microstructure to be produced is made. Here, a shell structure is provided surrounding the microstructure to be produced, with the source structure being created as the shell structure or the shell structure is produced using the source structure, and subsequently the target material is inserted into the shell structure.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 24, 2015
    Assignee: Nanoscribe GmbH
    Inventors: Michael Thiel, Martin Hermatschweiler