Patents Examined by Bradford Gates
  • Patent number: 8728337
    Abstract: A method is for processing a substrate. The method includes placing the substrate in a process volume and introducing a process gas or vapor into the process volume and/or subsequently removing gas or vapor from the volume. The step of introducing and/or removing the gas is at least partially performed by moving a movable wall to change the process volume in an appropriate sense.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 20, 2014
    Assignee: SPTS Technologies Limited
    Inventors: Carl Brancher, John MacNeil, Robert Trowell
  • Patent number: 8715517
    Abstract: A process for fabricating an acoustic wave resonator comprising a suspended membrane comprising a piezoelectric material layer, comprises the following steps: production of a first stack comprising at least one layer of first piezoelectric material on the surface of a first substrate; production of a second stack comprising at least one second substrate; production of at least one non-bonding initiating zone by deposition or creation of particles of controlled sizes leaving the surface of one of said stacks endowed locally with projecting nanostructures before a subsequent bonding step; direct bonding of said two stacks creating a blister between the stacks, due to the presence of the non-bonding initiating zone; and, thinning of the first stack to eliminate at least the first substrate.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Bruno Imbert, Emmanuel Defay, Chrystel Deguet, Hubert Moriceau, Mathieu Pijolat
  • Patent number: 8715519
    Abstract: Plasma reactors with adjustable plasma electrodes and associated methods of operation are disclosed herein. The plasma reactors can include a chamber, a workpiece support for holding a microfeature workpiece, and a plasma electrode in the chamber and spaced apart from the workpiece support. The plasma electrode has a first portion and a second portion configured to move relative to the first portion. The first and second portions are configured to electrically generate a plasma between the workpiece support and the plasma electrode.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 6, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Daniel Harrington
  • Patent number: 8709270
    Abstract: A chamber for combinatorially processing a substrate is provided. The chamber includes a first mask and a second mask that share a common central axis. The first mask and the second mask are independently rotatable around the common central axis. The first mask has a first plurality of radial apertures and the second mask has a second plurality of radial apertures. An axis of the first plurality of radial apertures is offset from an axis of the second plurality of radial apertures. A substrate support that is operable to support a substrate below the first and second masks is included. The substrate support shares the common central axis.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: April 29, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Peter Satitpunwaycha
  • Patent number: 8696922
    Abstract: A platinum-comprising material is plasma etched by being exposed to a plasma etching chemistry that includes CHCl3, CO2 and O2. In one embodiment, a method of processing a semiconductor substrate in the fabrication of integrated circuitry includes forming metallic platinum-comprising nanoparticles over a material. A portion of the nanoparticles is masked and another portion of the nanoparticles is unmasked. The unmasked portion of the metallic platinum-comprising nanoparticles is plasma etched using a plasma etching chemistry comprising CHCl3, CO2 and O2. Other embodiments are disclosed.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: April 15, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Hongbin Zhu, Mark Kiehlbauch, Alex Schrinsky
  • Patent number: 8685272
    Abstract: A composition for etching a silicon oxide layer, a method of etching a semiconductor device, and a composition for etching a semiconductor device including a silicon oxide layer and a nitride layer including hydrogen fluoride, an anionic polymer, and deionized water, wherein the anionic polymer is included in an amount of about 0.001 to about 2 wt % based on the total weight of the composition for etching a silicon oxide layer, and an etch selectivity of the silicon oxide layer with respect to a nitride layer is about 80 or greater.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: April 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Go-Un Kim, Hyo-San Lee, Myung-Kook Park, Ho-Seok Yang, Jeong-Nam Han, Chang-Ki Hong
  • Patent number: 8633112
    Abstract: Methods for fabricating sub-lithographic, nanoscale microstructures utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Timothy Quick
  • Patent number: 8632688
    Abstract: In a plasma processing apparatus in which a wafer is processed while supplying radio frequency power to electrodes disposed in a sample stage in a processing chamber within a reactor via a matching box, by matching a specific value of power at transition points of data values of at least two kinds among characteristic data including light emission intensity of the plasma, magnitude of its time variation, a matching position of the matching box, and a change of a value of a voltage of the radio frequency power supplied to the electrodes detected by varying the power to a plurality of values during the processing with a value detected by using characteristic data which is detected during the processing executed on a wafer of the same kind in a different reactor, the differences of the states inside the processing chamber or plasma among a plurality of semiconductor processing apparatuses or reactors are reduced.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: January 21, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masaru Izawa, Kouichi Yamamoto, Kenji Nakata, Atsushi Itou
  • Patent number: 8628677
    Abstract: Processes for making a profile-transferring substrate surface and membranes having curved features are disclosed. A profile-transferring substrate surface having a curved feature is created by isotropic plasma etching through a shadow mask. The shadow mask has a through hole which has a lower portion adjacent to the bottom surface of the shadow mask and an upper portion that is above and narrower than the lower portion. The isotropic plasma etching through the shadow mask can create a curved dent in a planar substrate in a central portion of an area enclosed by the bottom opening. After the shadow mask is removed. A uniform layer of material deposited over the exposed surface of the substrate will include a curved feature at the location of the curved dent in the substrate surface.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 14, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Gregory De Brabander, Mark Nepomnishy
  • Patent number: 8623232
    Abstract: A method and device for treating silicon wafers. In a first step, the silicon wafers (22) are conveyed flat along a continuous, horizontal conveyor belt (12, 32) and nozzles (20) or the like spray an etching solution (21) from the top onto the wafers to texture them, only little etching solution (21) being applied to the silicon wafers (22) from below. In a second step, the silicon wafers (22), which are aligned as in the first step, are wetted exclusively from below with the etching solution (35) to etch-polish them.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: January 7, 2014
    Assignee: Gebr. Schmid GmbH & Co.
    Inventor: Heinz Kappler
  • Patent number: 8617994
    Abstract: A polishing liquid composition includes composite oxide particles containing cerium and zirconium, a dispersing agent, and an aqueous medium. A powder X-ray diffraction spectrum of the composite oxide particles obtained by CuK?1 ray (?=0.154050 nm) irradiation includes a peak (first peak) having a peak top in a diffraction angle 2? (? is a Bragg angle) range of 28.61 to 29.67°, a peak (second peak) having a peak top in a diffraction angle 2? range of 33.14 to 34.53°, a peak (third peak) having a peak top in a diffraction angle 2? range of 47.57 to 49.63°, and a peak (fourth peak) having a peak top in a diffraction angle 2? range of 56.45 to 58.91°. A half-width of the first peak is 0.8° or less.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 31, 2013
    Assignee: Kao Corporation
    Inventors: Mami Shirota, Yasuhiro Yoneda
  • Patent number: 8608974
    Abstract: There is provided a substrate processing method capable of increasing an etching rate of a copper member without using a halogen gas. A Cu layer 40 having a smoothened surface 50 is obtained, and then, a processing gas produced by adding a methane gas to a hydrogen gas is introduced into an inner space of a processing chamber 15. Plasma is generated from this processing gas. In the inner space of the processing chamber 15, there exist oxygen radicals 52 generated when an oxide layer 42 is etched, and carbon radicals 53 generated from methane. The oxygen radicals 52 and the carbon radicals 53 are compounded to generate an organic acid, and the organic acid makes a reaction with copper atoms of the Cu layer 40. As a result, a complex of the organic acid having the copper atoms is generated, and the generated organic acid complex is vaporized.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Eiichi Nishimura
  • Patent number: 8603347
    Abstract: A method for forming a recess defect on a carbon nanotube is introduced. The method includes the following steps. A substrate with a surface is provided. A first carbon nanotube is deposed on the surface of the substrate. A second carbon nanotube is crossed with the first carbon nanotube. The second carbon nanotube crosses the first carbon nanotube and is in contact with the first carbon nanotube. A mask is deposited on substrate, the first carbon nanotube, and the second carbon nanotube. The substrate is etched to remove the second carbon nanotube and form a recess defect on the first carbon nanotube at a crossing position.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 10, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8597531
    Abstract: A method for manufacturing a device on a substrate includes forming a layer structure on the substrate, forming an auxiliary layer on the layer structure, forming a planarization layer on the auxiliary layer and on the substrate, exposing the auxiliary layer by a chemical mechanical polishing process and removing at least partly the auxiliary layer to form a planar surface of the remaining auxiliary layer or of the layer structure and the planarization layer. The chemical mechanical polishing process has a first removal rate with respect to the planarization layer and a second removal rate with respect to the auxiliary layer and the first removal rate is greater than the second removal rate.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 3, 2013
    Assignee: Infineon Technologies AG
    Inventors: Sandra Obernhuber, Christof Jalics, Joerg Adler, Uwe Hoeckele, Walter Preis, Reinhard Goellner, Tanja Schest, Patricia Nickut
  • Patent number: 8568602
    Abstract: A method for manufacturing a magnetic sensor that decreases area resistance and decreases MR ratio of the sensor by eliminating any oxide formation in the capping layer of the sensor. The method includes forming a sensor stack having a multi-layer capping structure formed there-over. The multi-layer capping structure can include first, second, third and fourth layers. The second layer is constructed of a material that is not easily oxidized and which is different from the first layer. The sensor can be formed using a mask that includes a carbon hard mask. After the sensor stack has been formed by ion milling, the hard mask can be removed by reactive ion etching. Then, a cleaning process is performed to remove the second, third and fourth layers of the capping layer structure using an end point detection method such as secondary ion mass spectrometry to detect the presence of the second layer.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 29, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Koji Sakamoto, Atsushi Katou, Takao Yonekawa, Norihiro Ookawa, Kouichi Nishioka, Kouji Okazaki
  • Patent number: 8557133
    Abstract: Slurry compositions and chemically activated CMP methods for polishing a substrate having a silicon carbide surface using such slurries. In such methods, the silicon carbide surface is contacted with a CMP slurry composition that comprises i) a liquid carrier and ii) a plurality of particles having at least a soft surface portion, wherein the soft surface portion includes a transition metal compound that provides a Mohs hardness ?6, and optionally iii) an oxidizing agent. The oxidizing agent can include a transition metal. The slurry is moved relative to the silicon carbide comprising surface, wherein at least a portion of the silicon carbide surface is removed.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 15, 2013
    Assignees: Sinmat, Inc., University of Florida Research Foundation, Inc.
    Inventors: Rajiv K Singh, Arul C. Arjunan, Dibakar Das, Deepika Singh, Abhudaya Mishra, Tanjore V Jayaraman
  • Patent number: 8551348
    Abstract: A magnetic recording medium has magnetic patterns formed of a patterned ferromagnetic layer, and a non-magnetic layer including a component of the ferromagnetic layer and separating the magnetic patterns, in which a thickness “a” of the non-magnetic layer and a thickness “b” of the magnetic patterns satisfy a relationship of: a<b.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yosuke Isowaki, Satoshi Shirotori, Yoshiyuki Kamata, Kaori Kimura, Masatoshi Sakurai
  • Patent number: 8535553
    Abstract: A film of single-layer to few-layer graphene is formed by depositing a graphene film via chemical vapor deposition on a surface of a growth substrate. The surface on which the graphene is deposited can be a polycrystalline nickel film, which is deposited by evaporation on a SiO2/Si substrate. A protective support layer is then coated on the graphene film to provide support for the graphene film and to maintain its integrity when it is removed from the growth substrate. The surface of the growth substrate is then etched to release the graphene film and the protective support layer from the growth substrate, wherein the protective support layer maintains the integrity of the graphene film during and after its release from the growth substrate. After being released from the growth substrate, the graphene film and protective support layer can be applied onto an arbitrary target substrate for evaluation or use in any of a wide variety of applications.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: September 17, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Jing Kong, Alfonso Reina Cecco, Mildred S. Dresselhaus
  • Patent number: 8524098
    Abstract: The method for forming nano size turfs on a surface of a transparent polymer film used in a solar cell is disclosed, which comprises a first step for attaching a transparent polymer film on a glass, a second step for installing the glass prepared in the first step on an upper side of the electrodes provided in the interior of a chamber and forming either a vacuum environment or an atmospheric environment, and a third step for supplying an electric power to the electrodes under the environment formed in the second step, etching the transparent polymer film attached on the surface of the glass and forming nano size turfs in circular cone shapes.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 3, 2013
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Jong Joo Rha, Koo Hyun Lee, Yong Soo Jeong, Wan Doo Kim
  • Patent number: 8524100
    Abstract: The invention provides a system and process of patterning structures on a carbon based surface comprising exposing part of the surface to an ion flux, such that material properties of the exposed surface are modified to provide a hard mask effect on the surface. A further step of etching unexposed parts of the surface forms the structures on the surface. The inventors have discovered that by controlling the ion exposure, alteration of the surface structure at the top surface provides a mask pattern, without substantially removing any material from the exposed surface. The mask allows for subsequent ion etching of unexposed areas of the surface leaving the exposed areas raised relative to the unexposed areas thus manufacturing patterns onto the surface. For example, a Ga+ focussed ion beam exposes a pattern onto a diamond surface which produces such a pattern after its exposure to a plasma etch.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: September 3, 2013
    Assignee: The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth, near Dublin
    Inventors: Graham L. W. Cross, Warren McKenzie, John B. Pethica