Patents Examined by Christopher M Roland
  • Patent number: 9910009
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 9905761
    Abstract: Disclosed is an organic light emission display device including; a substrate in which a first side area, a middle area, and a second side are sequentially defined in a first direction; a first electrode disposed on the substrate; a second electrode opposite to the first electrode; a red emission layer disposed between the first and second electrodes; a first subsidiary layer disposed between the red emission layer and the first electrode in the middle area, and configured to adjust a resonant range; and a second subsidiary layer disposed between the red emission layer and the first electrode respectively in the first and second side areas, and configured to adjust a resonant range. The first subsidiary layer is different from the second subsidiary layer in thickness.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 27, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: JungBae Song, Seonju Kim, Young-Rok Song
  • Patent number: 9893272
    Abstract: A method of fabricating a magnetic memory device is provided. The method may include sequentially forming a first magnetic layer, a tunnel barrier layer, and a second magnetic layer on a substrate, forming a mask pattern on the second magnetic layer to expose a portion of the second magnetic layer, forming a capping insulating layer on a sidewall of the mask pattern and the portion of the second magnetic layer, injecting an oxygen ion into the portion of the second magnetic layer through the capping insulating layer to form an oxide layer, anisotropically etching the capping insulating layer to form a capping spacer, and patterning the oxide layer, the tunnel barrier layer, and the first magnetic layer using the mask pattern and the capping spacer.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: February 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shin-Jae Kang, Jongchul Park, Byoungjae Bae, Jaesuk Kwon, Hyunsoo Shin
  • Patent number: 9825251
    Abstract: A display apparatus comprises a substrate, an encapsulation panel opposing the substrate, a display unit disposed between the substrate and the encapsulation panel and a seal portion bonding the substrate and the encapsulation panel and surrounding the display unit. The seal portion comprises a first surface facing the substrate and a second surface facing the encapsulation panel. The seal portion has a first thickness that is a distance between the first surface and the second surface measured at a first point and a second thickness that is a distance between the first surface and the second surface measured at a second point. A first virtual line passing a center point of the display area and the first point is substantially perpendicular to a second virtual line passing the center point and the second point. The first thickness is substantially different from the second thickness.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: November 21, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sangmin Hong, Jungi Youn, Goeun Lee
  • Patent number: 9818802
    Abstract: The present disclosure provides an electroluminescent device, its manufacturing method, a display substrate and a display device. The electroluminescent device includes a substrate, and a pixel defining layer arranged on the substrate. A pixel aperture matrix is formed in the pixel defining layer, at least one connection channel is formed on the pixel defining layer, an electroluminescent layer in a predetermined color is formed in each pixel aperture of the pixel aperture matrix, and the connection channel is configured to connect at least two pixel apertures of the pixel aperture matrix in an identical row or column and corresponding to the electroluminescent layers in an identical color.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: November 14, 2017
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Shinsuke Iguchi, Chinlung Liao, Xue Gao
  • Patent number: 9810689
    Abstract: Dual-gate ion-sensitive field effect transistors (ISFETs) for disease diagnostics are disclosed herein. An exemplary dual-gate ISFET includes a gate structure and a fluidic gate structure disposed over opposite surfaces of a device substrate. The gate structure is disposed over a channel region defined between a source region and a drain region in the device substrate. The fluidic gate structure includes a sensing well that is disposed over the channel region. The sensing well includes a sensing layer and an electrolyte solution. The electrolyte solution includes a constituent that can react with a product of an enzymatic reaction that occurs when an enzyme-modified detection mechanism detects an analyte. The sensing layer can react with a first ion generated from the enzymatic reaction and a second ion generated from a reaction between the product of the enzymatic reaction and the constituent, such that the dual-gate ISFET generates an enhanced electrical signal.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: November 7, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Yi-Hsien Chang
  • Patent number: 9806279
    Abstract: Provided are an organic light emitting display device and a manufacturing method thereof. In the organic light emitting display device, after an auxiliary electrode having a multilayer structure including different kinds of metals different in etching speed is formed, a void is formed within the auxiliary electrode upon formation of an anode. The resulting structure is created by a simplified process, with contact reliability between a cathode and the auxiliary electrode being enhanced, while resistance of the cathode is reduced.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 31, 2017
    Assignee: LG Display Co., Ltd.
    Inventors: JongHyeok Im, SeJune Kim, JoonSuk Lee, SoJung Lee, JaeSung Lee
  • Patent number: 9791406
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 9786750
    Abstract: A thin film transistor substrate includes a data line, a gate line, a gate electrode, a source electrode, a first drain electrode, a semiconductor layer and a second drain electrode. The data line and the gate line cross each other on a base substrate. The gate electrode is electrically connected to the gate line. The source electrode is electrically connected to the data line. The first drain electrode and the source electrode face each other. The semiconductor layer serves as a channel between the source electrode and the first drain electrode. The second drain electrode is disposed on the first drain electrode. The second drain electrode is electrically connected to the first drain electrode.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: October 10, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yong-Suk Yeo, Yi-Joon Ahn, Jong-Mo Yeo
  • Patent number: 9780158
    Abstract: An organic light-emitting display apparatus includes: an auxiliary electrode including: a first conductive layer; and a second conductive layer disposed on the first conductive layer, the second conductive layer having a resistance higher than a resistance of the first conductive layer, wherein the second conductive layer includes an opening portion exposing the first conductive layer; a pixel electrode; a pixel definition layer disposed on the pixel electrode and the auxiliary electrode, the pixel definition layer exposing the pixel electrode and the auxiliary electrode; a first intermediate layer disposed on the pixel electrode and the auxiliary electrode, the first intermediate layer including a first opening corresponding to the opening portion; an emission layer disposed on the first intermediate layer overlapping the exposed pixel electrode.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 3, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seho Lee, Taehyung Kim, Byoungseong Jeong
  • Patent number: 9773851
    Abstract: The present invention provides an OLED display device and a manufacture method thereof. By locating a thickness of a part of the second insulative layer correspondingly positioned above the bottom layer wiring in the white sub pixel area is larger than a thickness of other part of the second insulative layer in the white sub pixel area, increase a vertical distance from the bottom layer wiring to the first electrode in the white sub pixel area, and thus, the short circuit, the overcurrent between the first electrode and the bottom layer wiring of the white sub pixel area can be prevented. The manufacture method of the OLED display device is simple, easy for operation, and the manufactured OLED display device can prevent the short circuit or the overcurrent between the first electrode and the bottom layer wiring of the white sub pixel area occur and raise the manufacture yield of the OLED display device.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: September 26, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventors: Hejing Zhang, Chihyu Su
  • Patent number: 9761751
    Abstract: The present invention discloses a photo-detector comprising: an n-type photon absorbing layer of a first energy bandgap; a middle barrier layer, an intermediate layer is a semiconductor structure; and a contact layer of a third energy bandgap, wherein the layer materials are selected such that the first energy bandgap of the photon absorbing layer is narrower than that of said middle barrier layer; wherein the material composition and thickness of said intermediate layer are selected such that the valence band of the intermediate layer lies above the valence band in the barrier layer to create an efficient trapping and transfer of minority carriers from the barrier layer to the contact layer such that a tunnel current through the barrier layer from the contact layer to the photon absorbing layer is less than a dark current in the photo-detector and the dark current from the photon-absorbing layer to said middle barrier layer is essentially diffusion limited and is due to the unimpeded flow of minority carrier
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: September 12, 2017
    Assignee: Semi Conductor Devices
    Inventor: Philip Klipstein
  • Patent number: 9748399
    Abstract: To provide a novel semiconductor device in which a reduction in channel length is controlled. The semiconductor device includes an oxide semiconductor layer having a crystal part, and a source electrode layer and a drain electrode layer which are in contact with the oxide semiconductor layer. The oxide semiconductor layer includes a channel formation region and an n-type region in contact with the source electrode layer or the drain electrode layer. The crystal orientation of the crystal part is different between the channel formation region and the n-type region.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: August 29, 2017
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Junichi Koezuka, Kenichi Okazaki, Masahiro Takahashi, Takuya Matsuo, Shigeyasu Mori, Yosuke Kanzaki, Hiroshi Matsukizono
  • Patent number: 9726789
    Abstract: An optical sheet includes a transparent substrate. The optical sheet further includes light-scattering elements randomly and nonperiodically distributed in the transparent substrate. Each light-scattering element of the light scattering elements includes a binding-material member and light-scattering particles dispersed in the binding-material member. A weight percent calculated from dividing a total weight of light-scattering particles of the light-scattering elements by a total weight of the light-scattering elements is in a range of 5 wt % to 40 wt %.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: August 8, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jae-Ik Lim, Won-Sang Park
  • Patent number: 9698311
    Abstract: The present invention relates to colloidal quantum dots, to a process for producing such colloidal quantum dots, to the use thereof and to optoelectronic components comprising colloidal quantum dots.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: July 4, 2017
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSHUNG E.V., KOREA ELECTRONICS TECHNOLOGY INSTITUTE
    Inventors: Tonino Greco, Christian Ippen, Armin Wedel
  • Patent number: 9698044
    Abstract: A semiconductor structure includes a substrate, a first power device and a second power device in the substrate, at least one isolation feature between the first and second power device, and a trapping feature adjoining the at least one isolation feature in the substrate.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 4, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Alex Kalnitsky, Chih-Wen Yao, Jun Cai, Ruey-Hsin Liu, Hsiao-Chin Tuan
  • Patent number: 9689835
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity. An amplification factor of the BioFET device may be provided by a difference in capacitances associated with the gate structure on the first surface and with the interface layer formed on the second surface.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Rashid Bashir, Fei-Lung Lai, Chun-wen Cheng
  • Patent number: 9679857
    Abstract: Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: June 13, 2017
    Assignee: NXP B.V.
    Inventors: Matthias Merz, Youri Victorovitch Ponomarev, Mark van Dal
  • Patent number: 9666657
    Abstract: A display device includes: a substrate; a static electricity shielding member formed on the substrate; a scan line formed on the substrate and transferring a scan signal; a data line and a driving voltage line intersecting the scan line, being insulated therefrom and each transferring a data signal and a driving voltage; a thin film transistor formed on the static electricity shielding member; a first sacrifice electrode connected to the static electricity shielding member; and a second sacrifice electrode positioned under the first sacrifice electrode to form a sacrifice capacitor.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: May 30, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventor: Kyong-Hun Cho
  • Patent number: 9666613
    Abstract: A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 30, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Ji-Sun Kim, Ji-Hyun Kim, Shin-Il Choi, Yeong-Keun Kwon