Patents Examined by Christy L. Novacek
  • Patent number: 7615438
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a lanthanide yttrium aluminum oxide dielectric film on a substrate for use in a variety of electronic systems. The lanthanide yttrium aluminum oxide film may be structured as one or more monolayers. The lanthanide yttrium aluminum oxide film may be formed by atomic layer deposition.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: November 10, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7608493
    Abstract: A thin-film transistor substrate includes a gate line, a capacitor dielectric layer, a gate insulation layer, an active pattern, a data line, a protection layer, and a pixel electrode. The gate wiring including a gate electrode, a lower storage electrode, and a gate metal pad is disposed on a substrate. The capacitor dielectric layer is disposed on the lower storage electrode and the gate insulation layer is disposed on the substrate. The active pattern includes an active layer and a dummy active layer disposed on the gate insulation layer in a gate electrode region and a gate metal pad region, respectively. A portion of the upper storage electrode is disposed on the capacitor dielectric layer exposed through a first contact hole in the gate insulation layer.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Kweon Heo, Chun-Gi You
  • Patent number: 7608519
    Abstract: In a method of fabricating a trench isolation structure of a semiconductor device, excellent gap filling properties are attained, without the generation of defects. In one aspect, the method comprises: loading a substrate with a trench formed therein into a high-density plasma (HDP) chemical vapor deposition apparatus; primarily heating the substrate; applying a first bias power to the apparatus so as to form an HDP oxide liner on side wall and bottom surfaces of the trench, a gap remaining in the trench following formation of the HDP oxide liner; removing the application of the first bias power and secondarily heating the substrate; applying a second bias power at a power level that is greater than that of the first bias power to the substrate so as to form an HDP oxide film to fill the gap in the trench; and unloading the substrate from the apparatus.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-suk Shin, Yong-kuk Jeong
  • Patent number: 7601633
    Abstract: A semiconductor device and fabricating method thereof are provided. A carbon interconnection line can be formed on an interlayer insulating layer such that the carbon interconnection line is electrically connected to a conductive metal layer disposed in a contact hole of the semiconductor device.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 13, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Dong Ki Jeon
  • Patent number: 7598162
    Abstract: It is an object to provide a method of manufacturing a semiconductor device capable of forming a MOS transistor of high performance, comprising the steps of forming a gate electrode on a semiconductor substrate via a gate-insulating film (step S1), introducing a impurity into the semiconductor substrate using the gate electrode as a mask (step S7), introducing a diffusion-controlling substance into the semiconductor substrate to control the diffusion of the impurity (step S8), forming a side wall-insulating film on each side surface of the gate electrode (step S9), deeply introducing impurity into the semiconductor substrate using the gate electrode and the side wall-insulating film as masks (step S10), activating the impurity by the annealing treatment using a rapid thermal annealing method (step S11), and further activating the impurity by the millisecond annealing treatment (step S12).
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: October 6, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tomonari Yamamoto, Tomohiro Kubo
  • Patent number: 7585756
    Abstract: A MOS transistor includes a substrate, source/drain regions formed at portions of the substrate, and a channel region formed between the source/drain regions. The MOS transistor further includes a gate structure having a gate insulation layer pattern and a gate electrode formed on the channel region. The gate electrode includes a first gate conductive layer pattern and a second gate conductive layer pattern. The first gate conductive layer pattern has a nitrogen concentration gradient gradually increasing from a lower portion of the first gate conductive layer pattern to an upper portion of the first gate conductive layer pattern. The second gate conductive layer pattern includes a material having a resistance substantially lower than a resistance of the first gate conductive layer pattern.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gab-Jin Nam, Myoung-Bum Lee
  • Patent number: 7585695
    Abstract: An interline transfer type image sensing device that can be operated at high speed and with low image smear is described. The device incorporates a refractory metal layer which is used for both a light shield over the vertical charge transfer region and as a wiring layer for low resistance strapping of poly crystalline silicon (polysilicon) gate electrodes for the vertical charge transfer region. Plugs provided by a separate metallization layer connect the refractory light shield to the polysilicon gate electrode. These plugs allow high temperature processing after refractory light shield patterning for improved sensor performance without degradation of the polysilicon gate electrode or the refractory lightshield layer.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: September 8, 2009
    Assignee: Eastman Kodak Company
    Inventors: David N. Nichols, David L. Losee, Christopher Parks
  • Patent number: 7572743
    Abstract: A method of forming patterned thin films includes the steps of providing a porous membrane and a solution including a plurality of solid constituents and at least one surface stabilizing agent for preventing the solid constituents from flocculating out of suspension. The solution is dispensed onto a surface of the membrane. The solution is then removed by filtration through the membrane, wherein a patterned film coated membrane comprising a plurality of primarily spaced apart patterned regions are formed on the membrane. In one embodiment the method further includes the step of blocking liquid passage through selected portions of the membrane to form a plurality of open membrane portions and a plurality of blocked membrane portions before the dispensing step. The dispensing step includes ink jet printing the solution. An article having a patterned nanotube-including film thereon includes a substrate, and a patterned nanotube including film disposed on the substrate.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 11, 2009
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Zhuangchun Wu
  • Patent number: 7569464
    Abstract: The present invention provides a method for manufacturing a semiconductor device, which includes forming a gate structure over a substrate, and forming a stack of layers on the substrate and at least partially along a sidewall of the gate structure. In this embodiment, the stack of layers includes an initial layer located over the substrate, a buffer layer located over the initial layer and an offset layer located over the buffer layer. This embodiment of the method further includes removing horizontal segments of the offset layer and the buffer layer using a dry etch and a wet clean, wherein removing includes choosing at least one of an initial thickness of the buffer layer, a period of time for the dry etch or a period of time for the wet clean such that horizontal segments of the initial layer are exposed and substantially unaffected after the dry etch and wet clean.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Karen H. R. Kirmse, Yuanning Chen, Jarvis B. Jacobs, Deborah J. Riley
  • Patent number: 7566582
    Abstract: Systems, methods and devices relating to actuatably movable machines and with methods of using and manufacturing the same.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: July 28, 2009
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: H. Charles Tapalian, Jason E. Langseth
  • Patent number: 7560387
    Abstract: Methods for opening a hard mask and a silicon-on-insulator substrate in a single process chamber are disclosed. In one embodiment, the method includes patterning a photoresist over a stack including an anti-reflective coating (ARC) layer, a silicon dioxide (SiO2) based hard mask layer, a silicon nitride pad layer, a silicon dioxide (SiO2) pad layer and the SOI substrate, wherein the SOI substrate includes a silicon-on-insulator layer and a buried silicon dioxide (SiO2) layer; and in a single process chamber: opening the ARC layer; etching the silicon dioxide (SiO2) based hard mask layer; etching the silicon nitride pad layer; etching the silicon dioxide (SiO2) pad layer; and etching the SOI substrate. Etching all layers in a single chamber reduces the turn-around-time, lowers the process cost, facilitates process control and/or improve a trench profile.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Kangguo Cheng, Xi Li, Kevin R. Winstel
  • Patent number: 7547576
    Abstract: A structure and method for forming the same. The semiconductor structure includes a first semiconductor chip and N solder bumps in direct physical contact with the first semiconductor chip, wherein N is a positive integer. The semiconductor structure also includes a first solder wall on a perimeter of the first semiconductor chip such that the first solder wall forms a closed loop surrounding the N solder bumps.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: June 16, 2009
    Assignee: International Business Machines Corporation
    Inventors: Timothy Harrison Daubenspeck, Jeffrey Peter Gambino, Christopher David Muzzy, Wolfgang Sauter
  • Patent number: 7541259
    Abstract: The semiconductor device includes a lower device isolation structure formed in a semiconductor substrate to define an active region. The lower device isolation structure has a first compressive stress. An upper device isolation structure is disposed over the lower device isolation structure. The upper device isolation structure has a second compressive stress greater than the first compressive stress. A gate structure is disposed over the active region between the neighboring upper device isolation structures.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: June 2, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Yun Yi
  • Patent number: 7531470
    Abstract: Electronic devices are formed on a substrate that is advanced stepwise through a plurality of deposition vessels. Each deposition vessel includes a source of deposition material and has at least two shadow masks associated therewith. Each of the two masks is alternately positioned within the corresponding deposition vessel for patterning the deposition material onto the substrate through apertures in the mask positioned therein, and positioned in an adjacent cleaning vessel for mask cleaning. The patterning onto the substrate and the cleaning of at least one of the masks are performed concurrently.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: May 12, 2009
    Assignee: Advantech Global, Ltd
    Inventor: Thomas P. Brody
  • Patent number: 7524745
    Abstract: Method and device for doping or diffusion, or oxidation of silicon wafers (4), the wafers being introduced into the chamber (2) of an oven (1) wherein is introduced at least a gas for performing the doping or diffusion or oxidation process. The method comprises simultaneously with the introduction and passage of gas into the chamber (2) of the oven (1), continuously subjecting the latter to a depression of constant value. The device comprises an oven (1) provided with a chamber (2) wherein are introduced the wafers, the oven including at least an inlet tube (5a, 5b, 5c) for introducing at least a gas into the chamber (2) to carry out the processes and at least an outlet tube (6) for extracting the gas whereto is connected a suction unit (7) for generating in the chamber (2) a constant and controlled depression.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: April 28, 2009
    Assignee: Semco Engineering SA
    Inventor: Yvon Pellegrin
  • Patent number: 7521320
    Abstract: A flash memory device and a method of manufacturing the same, the flash memory device includes isolation layers formed in an isolation region of a semiconductor substrate, an auxiliary oxide layer formed on edge portions of an active region of the semiconductor substrate and on protruded sidewalls of the isolation layers, a tunnel oxide layer formed on the auxiliary oxide layer of the edge portions of the active region and at a central portion of the active region, and a first polysilicon layer for a floating gate formed on the tunnel oxide layer.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: April 21, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cha Deok Dong
  • Patent number: 7517773
    Abstract: A method of manufacturing a semiconductor device characterized by its high-speed operation and high reliability is provided in which a semiconductor layer crystallized by a CW laser is used for an active layer of a TFT. When a semiconductor layer is crystallized by a CW laser, one part is formed of large crystal grains whereas another part is formed of microcrystals due to the width-wise energy density distribution. The former exhibits excellent electric characteristics. The latter has poor electric characteristics because grain boundaries hinder movement of electric charges, and therefore causes inconveniences when used as an active layer of a transistor. Accordingly, circuits are arranged such that a semiconductor layer formed of large crystal grains is used for the active layer of every TFT.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: April 14, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshifumi Tanada, Kazuya Nakajima
  • Patent number: 7517795
    Abstract: A method for forming a stabilized metal silicide film, e.g., contact (source/drain or gate), that does not substantially agglomerate during subsequent thermal treatments, is provided In the present invention, ions that are capable of attaching to defects within the Si-containing layer are implanted into the Si-containing layer prior to formation of metal silicide. The implanted ions stabilize the film, because the implants were found to substantially prevent agglomeration or at least delay agglomeration to much higher temperatures than in cases in which no implants were used.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Roy A. Carruthers, Cedrik Y. Cole, Christophe Detavernier, Christian Lavoie, Kenneth P. Rodbell
  • Patent number: 7510975
    Abstract: In the method for manufacturing a semiconductor device according to the invention including the step of forming trenches having the depth thereof in perpendicular to the major surface of a semiconductor substrate, the step of forming trenches includes the steps of performing trench etching using an insulator film, formed on the major surface of the semiconductor substrate and shaped with a predetermined pattern, for a mask to form the trenches; etching the inside of the trenches using a halogen containing gas to smoothen the inside of the trenches; and thermally treating in a non-oxidizing and non-nitriding atmosphere. The manufacturing method according to the invention facilitates well removing the etching residues remaining in the trenches and rounding the trench corners properly when the trenches are 2 ?m or narrower in width and even when the trenches are 1 ?m or narrower in width.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: March 31, 2009
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Daisuke Kishimoto, Hitoshi Kuribayashi, Yuji Sano, Akihiko Ohi, Yoshihiko Nagayasu
  • Patent number: 7507621
    Abstract: Provided is a method of manufacturing a semiconductor device including the steps of: forming a first insulating film on a silicon substrate; forming a capacitor in which a lower electrode, a capacitor dielectric film configured of ferroelectric material, and an upper electrode are laminated in this order on the first insulating film; forming a silicon nitride film by a catalytic CVD method as a first capacitor protect insulating film covering the capacitor and the first insulating film; and forming a second insulating film on the first capacitor protect insulating film.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: March 24, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Jirou Miura