Patents Examined by Galina Yushina
  • Patent number: 9059266
    Abstract: A semiconductor device includes a buffer layer formed with a semiconductor adapted to produce piezoelectric polarization, and a channel layer stacked on the buffer layer, wherein a two-dimensional hole gas, generated in the channel layer by piezoelectric polarization of the buffer layer, is used as a carrier of the channel layer. On a complementary semiconductor device, the semiconductor device described above and an n-type field effect transistor are formed on the same compound semiconductor substrate. Also, a level shift circuit is manufactured by using the semiconductor device. Further, a semiconductor device manufacturing method includes forming a compound semiconductor base portion, forming a buffer layer on the base portion, forming a channel layer on the buffer layer, forming a gate on the channel layer, and forming a drain and source with the gate therebetween on the channel layer.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: June 16, 2015
    Assignee: Sony Corporation
    Inventor: Masahiro Mitsunaga
  • Patent number: 9059074
    Abstract: An integrated circuit package system includes: mounting an integrated circuit die adjacent to a lead; forming a first encapsulation around and exposing the integrated circuit die and the lead; and forming a planar interconnect between the integrated circuit die and the lead with the planar interconnect on the first encapsulation.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 16, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Henry Descalzo Bathan, Abelardo Jr. Hadap Advincula
  • Patent number: 9054122
    Abstract: To improve a performance of a semiconductor device having a capacitance element. An MIM type capacitance element, an electrode of which is formed with comb-shaped metal patterns composed of the wirings, is formed over a semiconductor substrate. A conductor pattern, which is a dummy gate pattern for preventing dishing in a CMP process, and an active region, which is a dummy active region, are disposed below the capacitance element, and these are coupled to shielding metal patterns composed of the wirings and then connected to a fixed potential. Then, the conductor pattern and the active region are disposed so as not to overlap the comb-shaped metal patterns in the wirings in a planar manner.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 9, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Satoshi Maeda, Yasushi Sekine, Tetsuya Watanabe
  • Patent number: 9048280
    Abstract: A vertical heterojunction bipolar transistor (HBT) includes doped polysilicon having a doping of a first conductivity type as a wide-gap-emitter with an energy bandgap of about 1.12 eV and doped single crystalline Ge having a doping of the second conductivity type as the base having the energy bandgap of about 0.66 eV. Doped single crystalline Ge having of doping of the first conductivity type is employed as the collector. Because the base and the collector include the same semiconductor material, i.e., Ge, having the same lattice constant, there is no lattice mismatch issue between the collector and the base. Further, because the emitter is polycrystalline and the base is single crystalline, there is no lattice mismatch issue between the base and the emitter.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Wilfried E. Haensch, Tak H. Ning
  • Patent number: 9041117
    Abstract: A Static Random Access Memory (SRAM) cell includes a first pull-up transistor and a second pull-up transistor, and a first pull-down transistor and a second pull-down transistor forming cross-latched inverters with the first pull-up transistor and the second pull-up transistor. A conductive feature includes a first leg having a first longitudinal direction, wherein the first leg interconnects a drain of the first pull-up transistor and a drain of the first pull-down transistor. The conductive feature further includes a second leg having a second extending direction. The first longitudinal direction and the second extending direction are un-perpendicular and un-parallel to each other. The second leg interconnects the drain of the first pull-up transistor and a gate of the second pull-up transistor.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 9035473
    Abstract: Provided are a thin circuit device with show-through of thin metal wires prevented and a method of manufacturing the circuit device. A circuit device mainly includes: a substrate including a first substrate and second substrates; pads formed respectively on upper surfaces of the second substrates; a semiconductor element fixed on an upper surface of the first substrate; thin metal wires each connecting the semiconductor elements and a corresponding one of the pads; and a sealing resin with which the semiconductor element and the thin metal wires are covered, and which thereby seals the circuit device with the semiconductor element and the thin metal wires disposed therein. Furthermore, filler particles located in the uppermost portion of the sealing resin are covered with a resin material constituting the sealing resin.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 19, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Isao Nakazato, Shigeharu Yoshiba, Takashi Sekibata
  • Patent number: 9035329
    Abstract: The light-emitting device having an equivalent circuit, includes at least four terminals, numbered from first terminal to fourth terminal, for electrical power feeding; a first light-emitting diode, arranged between the first terminal and the second terminal, configured to not emit light when a voltage is applied between the second terminal and one of the third terminal and the fourth terminal, and configured to emit light when a. voltage is applied between the first terminal and one of the third terminal and the four the terminal; and a second light-emitting diode, arranged between the third terminal and the fourth terminal, and configured to not emit light when the voltage is applied between the third terminal and one of the first terminal and the second terminal and configured to emit light when a voltage is applied between the fourth terminal and one of the first terminal and the second terminal.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 19, 2015
    Assignee: Epistar Corporation
    Inventors: Chao-Hsing Chen, Chien-Kai Chung, Hui-chen Yeh, Yi-Wen Ku
  • Patent number: 9035425
    Abstract: A semiconductor integrated circuit includes a substrate, a multi-gate transistor device formed on the substrate, and an n-well resistor formed in the substrate. The substrate includes a plurality of first isolation structures and at least a second isolation structure formed therein. A depth of the first isolation structures is smaller than a depth of the second isolation structure. The multi-gate transistor device includes a plurality of fin structures, and the fin structures are parallel with each other and spaced apart from each other by the first isolation structures. The n-well resistor includes at least one first isolation structure. The n-well resistor and the multi-gate transistor device are electrically isolated from each other by the second isolation structure.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 19, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Chao Tsao
  • Patent number: 9029887
    Abstract: Solid state lighting (SSL) devices and methods of manufacturing SSL devices are disclosed herein. In one embodiment, an SSL device comprises a support having a surface and a solid state emitter (SSE) at the surface of the support. The SSE can emit a first light propagating along a plurality of first vectors. The SSL device can further include a converter material over at least a portion of the SSE. The converter material can emit a second light propagating along a plurality of second vectors. Additionally, the SSL device can include a lens over the SSE and the converter material. The lens can include a plurality of diffusion features that change the direction of the first light and the second light such that the first and second lights blend together as they exit the lens. The SSL device can emit a substantially uniform color of light.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: May 12, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Kevin Tetz
  • Patent number: 9029863
    Abstract: A variation in electrical characteristics, such as a negative shift of the threshold voltage or an increase in S value, of a fin-type transistor including an oxide semiconductor material is prevented. An oxide semiconductor film is sandwiched between a plurality of gate electrodes with an insulating film provided between the oxide semiconductor film and each of the gate electrodes. Specifically, a first gate insulating film is provided to cover a first gate electrode, an oxide semiconductor film is provided to be in contact with the first gate insulating film and extend beyond the first gate electrode, a second gate insulating film is provided to cover at least the oxide semiconductor film, and a second gate electrode is provided to be in contact with part of the second gate insulating film and extend beyond the first gate electrode.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsuo Isobe
  • Patent number: 9029253
    Abstract: Nitrogen-containing phase-stabilized films, methods of forming phase-stabilized films, and structures and devices including the phase-stabilized films are disclosed. The phase-stabilized films include a matrix material and a phase stabilizer, which provides a morphologically stabilizing effect to a matrix material within the films. The phase-stabilized films may be used as, for example, gate electrodes and similar films in microelectronic devices.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 12, 2015
    Assignee: ASM IP Holding B.V.
    Inventors: Robert Brennan Milligan, Fred Alokozai
  • Patent number: 9029894
    Abstract: The present invention relates to a lead frame for an optical semiconductor device including: a lead frame having a first plate part and a second plate part disposed so as to oppose to the first plate part; an optical semiconductor element placed in the second plate part and electrically connected to the second plate part; a wire for electrically connecting the optical semiconductor element and the first plate part to each other; a circumferential reflector formed on the lead frame so as to surround a circumference of the optical semiconductor element; and a transparent resin for encapsulating the optical semiconductor element, filled in a recess formed by the lead frame and an inner periphery of the reflector, in which the lead frame has a contour shape substantially the same as a bottom contour shape of the inner periphery of the reflector for forming the recess.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 12, 2015
    Assignee: Nitto Denko Corporation
    Inventor: Kazuhiro Fuke
  • Patent number: 9029260
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a patterned dielectric layer having a plurality of first openings. The method includes forming a conductive liner layer over the patterned dielectric layer, the conductive liner layer partially filling the first openings. The method includes forming a trench mask layer over portions of the conductive liner layer outside the first openings, thereby forming a plurality of second openings, a subset of which are formed over the first openings. The method includes depositing a conductive material in the first openings to form a plurality of vias and in the second openings to form a plurality of metal lines. The method includes removing the trench mask layer.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Chieh Lin, Hung-Wen Su, Minghsing Tsai, Syun-Ming Jang
  • Patent number: 9024383
    Abstract: A super junction semiconductor device comprises a semiconductor portion with mesa regions protruding from a base section. The mesa regions are spatially separated in a lateral direction parallel to a first surface of the semiconductor portion. A compensation structure with at least two first compensation layers of a first conductivity type and at least two second compensation layers of a complementary second conductivity type may cover sidewalls of the mesa regions and portions of the base section between the mesa regions. Buried lateral faces of segments of the compensation structure may cut the first and second compensation layers between the mesa regions. A drain connection structure of the first conductivity type may extend along the buried lateral faces and may structurally connect the first compensation layers in an economic way keeping the thermal budget low.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 5, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Stefan Gamerith, Armin Willmeroth, Franz Hirler
  • Patent number: 9018046
    Abstract: An area efficient distributed device for integrated voltage regulators comprising at least one filler cell coupled between a pair of PADS on I/O rail of a chip and at least one additional filler cell having small size portion of said device is coupled to said I/O rails for distributing portions of said device on the periphery of said chip. The device is coupled as small size portion on the lower portion of said second filler cell for distributing said device on the periphery of said chip and providing maximal area utilization.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 28, 2015
    Assignees: STMicroelectronics International N.V., STMicroelectronics S.r.l.
    Inventors: Joshipura Jwalant, Nitin Bansal, Amit Katyal, Massimiliano Picca
  • Patent number: 8975751
    Abstract: A microelectronic unit can include a substrate having front and rear surfaces and active semiconductor devices therein, the substrate having a plurality of openings arranged in a symmetric or asymmetric distribution across an area of the rear surface, first and second conductive vias connected to first and second pads exposed at the front surface, pluralities of first and second conductive interconnects extending within respective ones of the openings, and first and second conductive contacts exposed for interconnection with an external element. The plurality of first conductive interconnects can be separated from the plurality of second conductive interconnects by at least one of the plurality of openings, the at least one opening at least partially filled with an insulating material. The distribution of the openings can include at least m openings spaced apart in a first direction and n openings spaced apart in a second direction transverse to the first direction.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Tessera, Inc.
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Uzoh, Piyush Savalia
  • Patent number: 8975709
    Abstract: An object is to prevent an operation defect and to reduce an influence of fluctuation in threshold voltage of a field-effect transistor. A field-effect transistor, a switch, and a capacitor are provided. The field-effect transistor includes a first gate and a second gate which overlap with each other with a channel formation region therebetween, and the threshold voltage of the field-effect transistor varies depending on the potential of the second gate. The switch has a function of determining whether electrical connection between one of a source and a drain of the field-effect transistor and the second gate of the field-effect transistor is established. The capacitor has a function of holding a voltage between the second gate of the field-effect transistor and the other of the source and the drain of the field-effect transistor.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hiroyuki Miyake
  • Patent number: 8975146
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A first isolation region is formed in a substrate to define a lateral boundary for an active device region and an intrinsic base layer is formed on the substrate. The intrinsic base layer has a section overlying the active device region. After the intrinsic base layer is formed, the first isolation region is partially removed adjacent to the active device region to define a trench that is coextensive with the substrate in the active device region and that is coextensive with the first isolation region. The trench is at least partially filled with a dielectric material to define a second isolation region.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Marwan H. Khater
  • Patent number: 8969141
    Abstract: According to one exemplary embodiment, a programmable poly fuse includes a P type resistive poly segment forming a P-N junction with an adjacent N type resistive poly segment. The programmable poly fuse further includes a P side silicided poly line contiguous with the P type resistive poly segment and coupled to a P side terminal of the poly fuse. The programmable poly fuse further includes an N side silicided poly line contiguous with the N type resistive poly segment and coupled to an N side terminal of the poly fuse. During a normal operating mode, a voltage less than or equal to approximately 2.5 volts is applied to the N side terminal of the programmable poly fuse. A voltage higher than approximately 3.5 volts is required at the N side terminal of the poly fuse to break down the P-N junction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Broadcom Corporation
    Inventor: Laurentiu Vasiliu
  • Patent number: 8963294
    Abstract: A method, structure and alignment procedure, for forming a finFET. The method including, defining a first fin of the finFET with a first mask and defining a second fin of the finFET with a second mask. The structure including integral first and second fins of single-crystal semiconductor material and longitudinal axes of the first and second fins aligned in the same crystal direction but offset from each other. The alignment procedure including simultaneously aligning alignment marks on a gate mask to alignment targets formed separately by a first masked used to define the first fin and a second mask used to define the second fin.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Thomas Ludwig, Edward Joseph Nowak