Patents Examined by Howard Weiss
  • Patent number: 9093364
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching an integrated circuit to the substrate; attaching a vertical interconnect over the substrate; forming an encapsulation on the substrate and covering the vertical interconnect; and forming a rounded cavity, having a curved side, in the encapsulation with the vertical interconnect exposed in the rounded cavity.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 28, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Reza Argenty Pagaila
  • Patent number: 9082792
    Abstract: A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: July 14, 2015
    Assignee: Au Optronics Corporation
    Inventors: Chung-Tao Chen, Ta-Wei Chiu, Yu-Pu Lin, Yi-Wei Chen
  • Patent number: 9076744
    Abstract: The invention relates to an organic-based electronic component, especially a component with reduced pixel crosstalk. According to the invention, the crosstalk is reduced by a grid electrode.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: July 7, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jens Fürst, Debora Henseler, Hagen Klausmann
  • Patent number: 9070765
    Abstract: A semiconductor device includes an epitaxial layer of semiconductor material of a first conductivity type, a body region of a second (opposite) conductivity type extending into the epitaxial layer from a main surface of the epitaxial layer, a source region of the first conductivity type disposed in the body region, and a channel region extending laterally in the body region from the source region along the main surface. A charge compensation region of the second conductivity type can be provided under the body region which extends in a direction parallel to the main surface and terminates prior to a pn-junction between the source and body regions at the main surface, and/or an additional region of the first conductivity type which has at least one peak doping concentration each of which occurs deeper in the epitaxial layer from the main surface than a peak doping concentration of the device channel region.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: June 30, 2015
    Assignee: Infineon Technologies AG
    Inventors: Adrian Finney, Andrew Wood
  • Patent number: 9070773
    Abstract: A semiconductor device and a method for preparing the same that can solve crack of a semiconductor film, capacitance electrodes and the like due to stress when forming a source electrode and a drain electrode in a semiconductor device having a thin film transistor and a holding capacitance with three or more capacitance electrodes is provided. Before forming the source electrode and the drain electrode, a crystalline silicon film for relaxing the stress is formed, then a contact hole connecting to the semiconductor film of the thin film transistor is opened, and a metal film to be the source electrode and the drain electrode is formed.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 30, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Akira Ishikawa
  • Patent number: 9066186
    Abstract: A light-based skin contact detector is described, including a boot having an index of refraction less than or equal to another index of refraction associated with skin at a frequency of light, a light emitter and detector coupled to the boot and configured to measure an amount of light energy reflected by an interface of the boot, and a digital signal processor configured to detect a change in the amount of light energy reflected by the interface. Embodiments relate to methods for detecting skin contact by measuring an amount of energy reflected by an interface when a boot is not in contact with skin, measuring another amount of energy reflected by another interface when the boot is in contact with the skin, and detecting a change between the amount of energy and the another amount of energy using a digital signal processor.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 23, 2015
    Assignee: AliphCom
    Inventor: Gregory C. Burnett
  • Patent number: 9064724
    Abstract: A semiconductor device includes a substrate where a cell region and a contact region are defined, an isolation region and an active region disposed alternately in the contact region, transistors configured to include a gate formed over the substrate and a source and a drain formed in the active region at both sides of the gate, in the contact region, memory blocks configured to include conductive lines stacked over the substrate and formed over the transistors, the conductive lines being extended from the cell region to the contact region in the direction crossing over the isolation region and the active region, and contact plugs formed between the memory blocks in the contact region.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: June 23, 2015
    Assignee: SK Hynix Inc.
    Inventors: Sung Lae Oh, Sang Hyun Sung
  • Patent number: 9064950
    Abstract: An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 23, 2015
    Assignee: XINTEC INC.
    Inventors: Chia-Lun Tsai, Chia-Ming Cheng, Long-Sheng Yeou
  • Patent number: 9059249
    Abstract: An interconnect structure is provided which includes at least one patterned and cured low-k material located directly on a surface of a substrate; and at least one least one conductively filled region embedded within an interconnect pattern located within the at least one patterned and cured low-k material, wherein the at least one conductively filled region has an inflection point at a lower region of the interconnect pattern that is in proximity to an upper surface of the substrate and the interconnect region having an upper region that has substantially straight sidewalls.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Maxime Darnon, Qinghuang Lin
  • Patent number: 9059108
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; mounting a base integrated circuit over the base substrate; attaching a lead to the base integrated circuit and the base substrate, the lead having a lead attachment portion over the base integrated circuit; and forming a base encapsulation over the lead, the base encapsulation having a cavity exposing the lead attachment portion.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 16, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: DaeSik Choi, JoonYoung Choi, YongHyuk Jeong
  • Patent number: 9054112
    Abstract: In semiconductor devices, the alignment mark for performing alignment processes of measurement tools and the like may be positioned within the die seal area on the basis of a geometric configuration, which still preserves mechanical integrity of the die seal without compromising the spatial information encoded into the alignment marks. For example, L-shaped alignment marks may be provided at one or more corners of the die seal area.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 9, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Matthias Lehr
  • Patent number: 9054017
    Abstract: A semiconductor structure includes a substrate, a nucleation layer on the substrate, a compositionally graded layer on the nucleation layer, and a layer of a nitride semiconductor material on the compositionally graded layer. The layer of nitride semiconductor material includes a plurality of substantially relaxed nitride interlayers spaced apart within the layer of nitride semiconductor material. The substantially relaxed nitride interlayers include aluminum and gallium and are conductively doped with an n-type dopant, and the layer of nitride semiconductor material including the plurality of nitride interlayers has a total thickness of at least about 2.0 ?m.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 9, 2015
    Assignee: Cree, Inc.
    Inventors: Adam William Saxler, Albert Augustus Burk, Jr.
  • Patent number: 9048302
    Abstract: A field effect transistor has an MOS structure and is formed of a nitride based compound semiconductor. The field effect transistor includes a substrate; a semiconductor operating layer having a recess and formed on the substrate; an insulating layer formed on the semiconductor operating layer including the recess; a gate electrode formed on the insulating layer at the recess; and a source electrode and a drain electrode formed on the semiconductor operating layer with the recess in between and electrically connected to the semiconductor operating layer. The recess includes a side wall inclined relative to the semiconductor operating layer.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 2, 2015
    Assignee: THE FURUKAWA ELECTRIC CO., LTD
    Inventors: Yoshihiro Sato, Hiroshi Kambayashi, Yuki Niiyama, Takehiko Nomura, Seikoh Yoshida, Masayuki Iwami, Jiang Li
  • Patent number: 9048260
    Abstract: A hard mask etch stop is formed on the top surface of tall fins to preserve the fin height and protect the top surface of the fin from damage during etching steps of the transistor fabrication process. In an embodiment, the hard mask etch stop is formed using a dual hard mask system, wherein a hard mask etch stop layer is formed over the surface of a substrate, and a second hard mask layer is used to pattern a fin with a hard mask etch stop layer on the top surface of the fin. The second hard mask layer is removed, while the hard mask etch stop layer remains to protect the top surface of the fin during subsequent fabrication steps.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: June 2, 2015
    Assignee: Intel Corporation
    Inventors: Ritesh Jhaveri, Bernard Sell, Tahir Ghani
  • Patent number: 9048118
    Abstract: Methods and systems for power semiconductor devices integrating multiple quasi-vertical transistors on a single chip. Multiple power transistors (or active regions) are paralleled, but one transistor has a lower threshold voltage. This reduces the voltage drop when the transistor is forward-biased. In an alternative embodiment, the power device with lower threshold voltage is simply connected as a depletion diode, to thereby shunt the body diodes of the active transistors, without affecting turn-on and ON-state behavior.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: June 2, 2015
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Patent number: 9041090
    Abstract: Methods for forming a string of memory cells and apparatuses having a vertical string of memory cells are disclosed. One such string of memory cells can be formed at least partially in a stack of materials comprising a plurality of alternating levels of control gate material and insulator material. A memory cell of the string can include floating gate material adjacent to a level of control gate material of the levels of control gate material. The memory cell can also include tunnel dielectric material adjacent to the floating gate material. The level of control gate material and the tunnel dielectric material are adjacent opposing surfaces of the floating gate material. The memory cell can include metal along an interface between the tunnel dielectric material and the floating gate material. The memory cell can further include a semiconductor material adjacent to the tunnel dielectric material.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Akira Goda, Durai Vishak Nirmal Ramaswamy
  • Patent number: 9041110
    Abstract: A semiconductor device includes a substrate, a gate positioned on the substrate, a drain region and a source region formed at respective two sides of the gate in the substrate, at least a first doped region formed in the drain region, and at least a first well having the first doped region formed therein. The source region and the drain region include a first conductivity type, the first doped region and the first well include a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 26, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Lu-An Chen, Tien-Hao Tang
  • Patent number: 9034711
    Abstract: An LDMOS is formed with a second gate stack over the n? drift region, having a common gate electrode with the gate stack, and having a higher work function than the gate stack. Embodiments include forming a first conductivity type well, having a source, surrounded by a second conductivity type well, having a drain, in a substrate, forming first and second gate stacks on the substrate over a portion of the first well and a portion of the second well, respectively, the first and second gate stacks sharing a common gate electrode, and tuning the work functions of the first and second gate stacks to obtain a higher work function for the second gate stack. Other embodiments include forming the first gate stack with a first high-k dielectric and the second gate stack with a second high-k dielectric, and forming the first and second gate stacks with asymmetric dielectrics.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 19, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Eng Huat Toh, Jae Gon Lee, Chung Foong Tan, Elgin Quek
  • Patent number: 9035451
    Abstract: The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of cavities with different pressures on a wafer package system, and an associated apparatus. In some embodiments, the method is performed by providing a work-piece having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the work-piece in a first ambient environment having a first pressure. The bonding forms a plurality of cavities abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of cavities leading to a gas flow path that could be held at a pressure level different from the first pressure. The one or more openings in the one or more of the plurality of cavities are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of cavities to be held at the different pressure.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Kuei-Sung Chang, Chun-Wen Cheng
  • Patent number: 9024378
    Abstract: This invention discloses a semiconductor power device. The trenched semiconductor power device includes a trenched gate, opened from a top surface of a semiconductor substrate, surrounded by a source region encompassed in a body region near the top surface above a drain region disposed on a bottom surface of a substrate. The semiconductor power device further includes an implanting-ion block disposed above the top surface on a mesa area next to the body region having a thickness substantially larger than 0.3 micron for blocking body implanting ions and source ions from entering into the substrate under the mesa area whereby masks for manufacturing the semiconductor power device can be reduced.
    Type: Grant
    Filed: February 9, 2013
    Date of Patent: May 5, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, François Hébert, Sung-Shan Tai, Sik K Lui