Patents Examined by Jay C Chang
  • Patent number: 11688832
    Abstract: Solid-state lighting devices and more particularly light-emitting devices including light-emitting diodes (LEDs) with light-altering material arrangements are disclosed. LED devices may include light-altering materials that are provided around peripheral sidewalls of LED chips without the need for a supporting submount or lead frame. The light-altering materials may be provided with reduced thicknesses along peripheral sidewalls of LED chips. An exemplary LED device as disclosed herein may be configured with a footprint that is close to a footprint of the LED chip within the LED device while also providing an amount of light-altering material around peripheral edges of the LED chip to reduce cross-talk. Accordingly, such LED devices may be well suited for use in applications where LED devices form closely-spaced LED arrays. Fabrication techniques are disclosed that include laminating a preformed sheet of light-altering material on one or more surfaces of the LED chip.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: June 27, 2023
    Assignee: CreeLED, Inc.
    Inventors: Tucker McFarlane, Matthew Brady, Derek Miller, Colin Blakely
  • Patent number: 11682600
    Abstract: An arrangement includes a panel configured as a pre-form for manufacturing a plurality of component carriers; a protection layer covering a surface portion of a main surface of the panel, wherein the protection layer is detachable from the surface portion without leaving residues on the panel. A handling tool for handling the panel includes a surface onto which the panel is arrangeable. The panel includes a handling surface, with which the panel is arrangeable onto the handling tool, wherein the handling surface comprises at least part of the surface portion covered by the protection layer.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: June 20, 2023
    Assignee: AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
    Inventors: Markus Leitgeb, Marco Gavagnin, Heinz Habenbacher
  • Patent number: 11683989
    Abstract: A method of manufacturing a data storage device may include forming a magnetic tunnel junction layer on a substrate, irradiating a first ion beam on the magnetic tunnel junction layer to form magnetic tunnel junction patterns separated from each other, irradiating a second ion beam on the magnetic tunnel junction layer, and irradiating a third ion beam on the magnetic tunnel junction layer. The first ion beam may be irradiated at a first incident angle. The second ion beam may be irradiated at a second incident angle that may be smaller than the first incident angle. The third ion beam may be irradiated to form sidewall insulating patterns on sidewalls of the magnetic tunnel junction patterns based on re-depositing materials separated by the third ion beam on the sidewalls of the magnetic tunnel junction patterns.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: June 20, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongchul Park, Sang-Kuk Kim
  • Patent number: 11676907
    Abstract: A method including forming a frame having an opening, forming a first metal layer, forming a first encapsulant, forming an insulation layer on the first metal layer, forming a first through-hole and a second through-hole penetrating the insulation layer and the first encapsulant, forming a second metal layer and a third metal layer, forming a second encapsulant, forming a first metal via and a second metal via penetrating the second encapsulant and a metal pattern layer on the second encapsulant, and forming a connection structure. The first metal layer and the second metal layer respectively are formed to extend to a surface of each of the first encapsulant and the frame, facing the metal pattern layer, and the first metal layer and the second metal layer are connected to the metal pattern layer through the first metal via and the second metal via having heights different from each other.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 13, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong Koon Lee, Myung Sam Kang, Young Gwan Ko, Young Chan Ko, Chang Bae Lee
  • Patent number: 11677051
    Abstract: Embodiments described herein are directed towards enhanced systems and methods for applying underfill (UF) material to fill a gap between electrically coupled semiconductor devices in an integrated device. In some embodiments, uncured UF material may be applied to one edge of the gap, and capillary flow may be employed to distribute the uncured UF material into a first portion of the gap. To fill a second portion of the gap, accelerated motion may be employed. For example, the integrated device may be affixed to a centrifuge, and the centrifuge can be used to spin the integrated device to spread the uncured UF material further into the gap. In some embodiments, the accelerated motion may be employed to distribute the uncured UF material substantially uniformly within the gap. Once the uncured UF material has been spread out, one or more curing processes may be employed to cure the sandwiched UF material.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 13, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Daniel Brodoceanu, Zheng Sung Chio, Tennyson Nguty, Chao Kai Tung, Oscar Torrents Abad
  • Patent number: 11669765
    Abstract: A system that includes: a qubit; a qubit readout resonator arranged adjacent to the qubit to couple to the qubit; and a first filter arranged adjacent to the qubit readout resonator to couple to the qubit readout resonator, the first filter comprising: a common port arranged to receive both a qubit readout resonator input drive signal and a measurement output signal from the qubit readout resonator, wherein the first filter is configured to impede at least one measurement photon emitted from the qubit is disclosed.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 6, 2023
    Assignee: Google LLC
    Inventor: Julian Shaw Kelly
  • Patent number: 11670747
    Abstract: According to an aspect, a display device includes: a substrate; a plurality of pixels provided to the substrate; a plurality of light emitting elements provided to the pixels; and a first light diffusion layer including a plurality of light diffusion structures and having a first surface and a second surface opposite to the first surface, the second surface facing the substrate with the light emitting elements interposed between the second surface and the substrate. The light diffusion structures each include a plurality of high refractive index layers and a plurality of low refractive index layers. The high refractive index layers and the low refractive index layers are alternately layered in a thickness direction of the first light diffusion layer. The high refractive index layers and the low refractive index layers are each curved and recessed in a direction from the first surface toward the second surface.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: June 6, 2023
    Assignee: Japan Display Inc.
    Inventor: Osamu Itou
  • Patent number: 11667519
    Abstract: An integrated semiconductor device includes: a MEMS structure; an ASIC electronic circuit; and conductive interconnection structures electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: June 6, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Lorenzo Corso
  • Patent number: 11670668
    Abstract: A light-emitting device including a substrate, an insulating layer, an inner circuit structure, a plurality of light-emitting elements, an insulating encapsulation layer, and a transparent conductive layer is provided. The insulating layer is disposed on the substrate. The inner circuit structure is disposed on the insulating layer. The light-emitting elements are correspondingly disposed on the inner circuit structure. The insulating encapsulation layer is disposed on the inner circuit structure. The insulating encapsulating layer covers a portion of the inner circuit structure and encapsulates the light-emitting elements. The transparent conductive layer is disposed on the insulating encapsulating layer. The transparent conductive layer electrically connects the light-emitting elements, and serially connects the light-emitting elements.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: June 6, 2023
    Inventors: Kuan-Yu Chen, Hsiao-Lung Lin, Hao-Hsiang Huang
  • Patent number: 11664345
    Abstract: A semiconductor package element includes a die, a passive layer, a conductive structure and an encapsulation layer. The die includes a first surface, a second surface and a third surface. The second surface is opposite to the first surface. The third surface is connected between the first surface and the second surface. The passive layer is disposed on the first surface and formed with a hole. The conductive structure is electrically coupled to the die through the hole. The encapsulation layer covers the first surface and the third surface of the die, wherein the passive layer is embedded in the encapsulation layer, a portion of the conductive structure is embedded in the encapsulation layer, and the other portion of the conductive structure protrudes from an etched surface of the encapsulation layer, the etched surface is formed by plasma etching.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: May 30, 2023
    Assignee: PANJIT INTERNATIONAL INC.
    Inventors: Chung-Hsiung Ho, Chih-Hung Chang, Chi-Hsueh Li
  • Patent number: 11664321
    Abstract: A multi-step conductive interconnect (MSI) may comprise a first step of the MSI comprising a first end and a second end opposite the first end, a first height (Ha) and a first diameter (Da). A second step of the MSI may comprise a first end and a second end opposite the first end. The first end of the second step contacts the second end of the first step. The second step may comprise a second height (Hb) and a second diameter (Db). The MSI may comprise a height (H) and a height to width aspect ratio (H:Da) greater than or equal to 1.5:1. A sidewall of the first step may comprise an offset (O) with respect to a sidewall of the second step to form a disjointed sidewall profile. The offset O may be in a range of 0.1 ?m-20 ?m.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: May 30, 2023
    Assignee: Deca Technologies USA, Inc.
    Inventors: Clifford Sandstrom, Craig Bishop, Timothy L. Olson
  • Patent number: 11658046
    Abstract: Batch semiconductor packaging structures with back-deposited shielding layer and manufacturing method are provided. A grid having multiple frames is glued on an adhesive substrate. Multiple semiconductor devices respectively align with corresponding frames and are stuck on the adhesive substrate. Then a metal layer covers the semiconductor devices and the grid. A distance between four peripheries of a bottom of each semiconductor device and the corresponding frame is smaller than a distance between the bottom and the adhesive substrate, so that the a portion of the metal layer extended to the peripheries of the bottom is effectively reduced during forming the metal layer. After the semiconductor devices are picked up, no metal scrap is remined thereon. Therefore, the adhesive substrate does not need to form openings in advance and is reusable. The grid is also reusable so the manufacturing cost of the present invention is decreased.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: May 23, 2023
    Assignee: Powertech Technology Inc.
    Inventors: Shih-Chun Chen, Sheng-Tou Tseng, Kun-Chi Hsu, Chin-Ta Wu, Ting-Yeh Wu
  • Patent number: 11658271
    Abstract: A deep ultraviolet (DUV) light-emitting diode (LED) module structure contains: a holder configured to accommodate a substrate. The holder including a receiving cup mounted therein and a transparent layer mounted on a top of the receiving cup. The holder includes a DUV LED chip adhered on the substrate, and the holder, the substrate, and the DUV LED chip are connected and packaged. The substrate is electrically connected with a drive circuit, and the drive circuit is configured to turn on/off the DUV LED chip. Thereby, the DUV LED module structure enhances DUV radiation intensity, reduces a loss of optical path, and slows down deterioration because of DUV irradiation.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: May 23, 2023
    Assignee: Cheng Mei Optronics Inc.
    Inventors: Bin-Chun Hsieh, Siang-Jyun Chen, Sin-yu Chen
  • Patent number: 11659754
    Abstract: A quantum dot ink, a manufacturing method of a full-color film, and a display panel are provided. The quantum dot ink includes a plurality of quantum dots, a plurality of scattering particles, a polar solvent, and a transparent polymer material, wherein the transparent polymer material is used as a host material.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 23, 2023
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SHENZHEN CHINA SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Wenxiang Peng
  • Patent number: 11652014
    Abstract: An electronic package and method for manufacturing the same are provided. The electronic package includes a first conductive structure, a second conductive structure, an electronic component, an underfill and a dam structure. The second conductive structure is disposed on the first conductive structure, wherein the second conductive structure defines a cavity over the first conductive structure. The electronic component is disposed on the first conductive structure and at least partially disposed in the cavity. The underfill is disposed between the first conductive structure and the electronic component. The dam structure is disposed on the first conductive structure and configured to confine the underfill.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 16, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Chung-Yuan Tsai
  • Patent number: 11651992
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to gap fill void and connection structures and methods of manufacture. The structure includes: a gate structure comprising source and drain regions; a gate contact in direct contact and overlapping the gate structure; and source and drain contacts directly connecting to the source and drain regions, respectively.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: May 16, 2023
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Haigou Huang, Yuping Ren, Paul Ackmann, Guoxiang Ning
  • Patent number: 11652084
    Abstract: A method of forming a semiconductor package includes providing a panel, providing one or more metal layers on an upper surface of the panel, forming a die pad and bond pads from the one or more metal layers, the die pad being adjacent to and spaced apart from the bond pads, attaching a die to the die pad, forming electrical connections between the die and the bond pads, encapsulating the die and the electrical connections with an electrically insulating mold compound, removing portions of the panel, and exposing the die pad and the bond pads after encapsulating the die.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: May 16, 2023
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Gerald Ofner, Stephan Bradl, Stefan Miethaner, Alexander Heinrich, Horst Theuss, Peter Scherl
  • Patent number: 11647600
    Abstract: Various embodiments of a sealed package and a method of forming such package are disclosed. The package includes a housing having an inner surface and an outer surface, a dielectric substrate having a first major surface and a second major surface, and a dielectric bonding ring disposed between the first major surface of the dielectric substrate and the housing, where the dielectric bonding ring is hermetically sealed to both the first major surface of the dielectric substrate and the housing. The package further includes an electronic device disposed on the first major surface of the dielectric substrate, and a power source disposed at least partially within the housing and electrically connected to the electronic device.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: May 9, 2023
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Rajesh V. Iyer, Gordon O. Munns, Andrew J. Ries, Andrew J. Thom
  • Patent number: 11641007
    Abstract: A light-emitting device includes a semiconductor diode structure with one or more light-emitting active layers, an anti-reflection coating on its front surface, and a redirection layer on its back surface. Active-layer output light propagates within the diode structure. The anti-reflection coating on the front surface increases transmission of active-layer output light incident below the critical angle ?C. Active-layer output light incident on the redirection layer at an incidence angle greater than ?C is redirected to propagate toward the front surface at an incidence angle that is less than ?C. Device output light is transmitted by the front surface to propagate in an ambient medium, and includes first and second portions of the active-layer output light incident on the front surface at an incidence angle less than ?C, the first portion without redirection by the redirection layer and the second portion with redirection by the redirection layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 2, 2023
    Assignee: Lumileds LLC
    Inventors: Antonio Lopez-Julia, Venkata Ananth Tamma, Aimi Abass, Philipp-Immanuel Schneider
  • Patent number: 11637064
    Abstract: Examples of an integrated circuit a having an advanced two-dimensional (2D) metal connection with metal cut and methods of fabricating the same are provided. An example method for fabricating a conductive interconnection layer of an integrated circuit may include: patterning a conductive connector portion on the conductive interconnection layer of the integrated circuit using extreme ultraviolet (EUV) lithography, wherein the conductive connector portion is patterned to extend across multiple semiconductor structures in a different layer of the integrated circuit; and cutting the conductive connector portion into a plurality of conductive connector sections, wherein the conductive connector portion is cut by removing conductive material from the metal connector portion at one or more locations between the semiconductor structures.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Liang Chen, Cheng-Chi Chuang, Chih-Ming Lai, Chia-Tien Wu, Charles Chew-Yuen Young, Hui-Ting Yang, Jiann-Tyng Tzeng, Kam-Tou Sio, Ru-Gun Liu, Shun Li Chen, Shih-Wei Peng, Tien-Lu Lin