Patents Examined by Kinam Park
  • Patent number: 11381056
    Abstract: A light source has a resonant laser cavity with an optical grating and a waveguide that has a longitudinal axis. A portion of the longitudinal axis extends through the optical grating and serves as a grating axis. The laser cavity is configured to generate a laser signal that exits the laser cavity through the optical grating. The optical grating includes multiple perturbation structures that each causes a perturbation in an effective refractive index of the waveguide. The perturbation structures are staggered on the waveguide such that the perturbation structures that are adjacent to one another in a longitudinal direction are spaced apart in a transverse direction. The longitudinal direction is a direction parallel to the grating axis and the transverse direction is a direction transverse to the longitudinal direction.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 5, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Amir Ali Tavallaee, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11374375
    Abstract: A laser-beam power-modulation system includes an acousto-optic modulator (AOM) to receive a laser beam and separate the laser beam into a primary beam and a plurality of diffracted beams based on an input signal. The power of the primary beam depends on the input signal. The system also includes a slit to transmit the primary beam and dump the plurality of diffracted beams, a controller to generate a control signal based at least in part on feedback indicative of the power of the primary beam or the power of a beam generated using the primary beam, and a driver to generate the input signal based at least in part on the control signal.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: June 28, 2022
    Assignee: KLA Corporation
    Inventors: Mandar Paranjape, Steve Yifeng Cui, Anatoly Romanovsky, Million Daniel, Nadine Asenbaum-Doerre, Jeff Chen
  • Patent number: 11362474
    Abstract: In a general aspect, quantum electrodynamic (QED) interactions are generated using a parabolic transmission mirror. In some aspects, a system for generating a QED interaction includes an optical pulse generator and a vacuum chamber. The vacuum chamber includes a parabolic transmission mirror in an ultra-high vacuum region within the vacuum chamber. The parabolic transmission mirror is configured to produce the QED interaction in the ultra-high vacuum region based on an optical pulse from the optical pulse generator. The parabolic transmission mirror includes an optical inlet at a first end and an optical outlet at a second, opposite end. The parabolic transmission mirror also includes a parabolic reflective surface about an internal volume of the parabolic transmission mirror between the first and second ends. The parabolic reflective surface extends from the optical inlet to the optical outlet and defines a focal point outside the internal volume of the parabolic transmission mirror.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 14, 2022
    Assignee: Infinite Potential Laboratories LP
    Inventors: Steve MacLean, Stephane Payeur, Francois Filion-Gourdeau, Sylvain Fourmaux, Joey Dumont
  • Patent number: 11362481
    Abstract: A pulse analysis system or method includes a frequency filter that receives an ultrafast pulse under test and disperses the pulse under test over a frequency range. The frequency filter separates the pulse under test into component frequency slices and provides the frequency slices to a detector coupled to a digitizer, which processes the digitized signal and collects a sonogram characteristic of the pulse under test. The frequency slices are arranged to overlap. Ptychography is performed on the sonogram to obtain characteristics of the pulse under test.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: MESA PHOTONICS, LLC
    Inventor: Daniel J Kane
  • Patent number: 11362473
    Abstract: A device and a method for producing a patterned functional coating on a first curved glass layer, the device including a support for holding the first curved glass layer, at least one laser, and a guidance unit, provided for guiding the beam of the laser over the functional coating, such that parts of the functional coating are removed in order to pattern the functional coating.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: June 14, 2022
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventor: Li-Ya Yeh
  • Patent number: 11349272
    Abstract: A laser chamber of an excimer laser apparatus includes a container including a first member and a second member and configured to accommodate a laser gas in the container and a seal member disposed between two seal surfaces facing each other, a seal surface of the first member and a seal surface of the second member. A laser-gas-side surface of the seal member is made of fluorine-based rubber, and an atmosphere-side surface of the seal member is formed of a film configured to suppress atmosphere transmission.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 31, 2022
    Assignee: Gigaphoton Inc.
    Inventor: Masaharu Miki
  • Patent number: 11349273
    Abstract: Disclosed is a laser discharge chamber in which useful lifetime is extended by local electrical tuning using one or a combination of design of the chamber internal geometry, placement and distribution of components within the chamber such as electrodes, current returns, and capacitors, and selective electrical isolation of portions of the components.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 31, 2022
    Assignee: Cymer, LLC
    Inventors: Edward Siqi Luo, Richard Carl Ujazdowski, Shuang Xu
  • Patent number: 11336074
    Abstract: A sensor system includes an optical aperture, a light source configured to generate a light pulse along a first optical path, a reflective surface configured to reflect the light pulse from the first optical path to a second optical path for passing through the optical aperture, a beam steering device positioned in the optical aperture and configured to steer the light pulse along different directions to one or more objects in an angle of view of the sensor system, a detector configured to receive a reflected light pulse and convert the reflected light pulse into an electrical signal, the reflected light pulse being reflected back from the one or more objects and passed through the beam steer device, and a spatial filtering device positioned between the beam steering device and the detector to block undesirable light in both the light pulse and the reflected light pulse.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: May 17, 2022
    Assignee: SZ DJI TECHNOLOGY CO., LTD.
    Inventors: Xiaoping Hong, Huai Huang, Jiebin Xie
  • Patent number: 11316315
    Abstract: A fiber laser apparatus includes a pump light source that emits pump light; a pump delivery fiber that guides the pump light; an amplifying optical fiber that is optically coupled to the pump delivery fiber and guides laser light; and a filter element that causes more loss of light of a wavelength range that includes a peak wavelength of at least one of Stokes light and anti-Stokes light than the laser light. The Stokes light and anti-Stokes light result from four-wave mixing involving a plurality of guide modes in a multi-mode fiber that guides the laser light. The filter element is disposed between: the pump delivery fiber and the amplifying optical fiber, the amplifying optical fiber and the multi-mode fiber, or at the multi-mode fiber.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: April 26, 2022
    Assignee: FUJIKURA LTD.
    Inventors: Hiroyuki Kusaka, Masahiro Kashiwagi
  • Patent number: 11316324
    Abstract: An array of surface-emitting lasers is provided. The array outputs high brightness in a unipolar way. The array comprises a stress-adjustment unit and a plurality of epitaxial device units. The stress-adjustment unit is used to adjust stress. The stress from a substrate is used to select a laser mode for an aperture unit. The selection of the laser mode is enhanced for the aperture unit without sacrificing driving current. Low current operation is achieved in a single mode for effectively reducing volume and further minimizing the size of the whole array to achieve high-quality laser output. An object can be scanned by the outputted laser to obtain a clear image with a high resolution. Hence, the present invention is applicable for face recognition with high recognition and high security.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 26, 2022
    Assignee: National Central University
    Inventor: Jin-Wei Shi
  • Patent number: 11303098
    Abstract: A multi-junction VCSEL is formed by as a compact structure that reduces lateral current spreading by reducing the spacing between adjacent active regions in the stack of such regions used to from the multi-junction device. At least two of the active regions within the stack are located adjacent peaks of the intensity profile of the VCSEL, with an intervening tunnel junction positioned at a trough between the two peaks. The alignment of the active regions with the peaks maximizes the generated optical power, while the alignment of the tunnel junction with the trough minimizes optical loss. The close spacing on adjacent peaks forms a compact structure (which may even include a cavity having a sub-? optical length) that lessens the total path traveled by carriers and therefore reduces lateral current spread.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 12, 2022
    Assignee: II-VI Delaware, Inc.
    Inventor: Giuseppe Tandoi
  • Patent number: 11303088
    Abstract: An optical frequency manipulation using an optical subsystem configured to provide a modulated laser beam for interaction with an atomic sample. The optical system may include: an optical subsystem for producing a light beam, the optical subsystem having a laser source and an IQ modulator, wherein the IQ modulator is operable to modulate light from the laser source at a carrier frequency to produce modulated light having a single sideband at a sideband frequency; and a chamber for containing an atomic sample, wherein the optical subsystem is arranged to direct the light beam towards the chamber to interact with an atomic sample contained therein.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: April 12, 2022
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Yu-Hung Lien, Michael Holynski, Lingxiao Zhu, Kai Bongs
  • Patent number: 11289874
    Abstract: A control device that can apply a laser oscillator control device to various types of systems. The control device includes an analog signal input unit configured to receive an output control signal for controlling a laser output of the laser oscillator or a mode control signal for controlling an operation mode of the laser oscillator as an analog signal; a digital signal input unit configured to receive the output control signal or the mode control signal as a digital signal; and a controller configured to transmit a laser command for controlling the laser output to the laser oscillator in response to the output control signal received by the analog signal input unit or the digital signal input unit, and transmit an operation command for operating the laser oscillator to the laser oscillator in the operation mode in response to the mode control signal received by the analog signal input unit or the digital signal input unit.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: March 29, 2022
    Assignee: Fanuc Corporation
    Inventor: Satoshi Kagiwada
  • Patent number: 11289879
    Abstract: Disclosed are photonic particles and methods of using particles in biological samples. The particles are configured to emit laser light when energetically stimulated by, e.g., a pump source. The particles may include a gain medium with inorganic materials, an optical cavity with high refractive index, and a coating with organic materials. The particles may be smaller than 3 microns along their longest axes. The particles may attach to each other to form, e.g., doublets and triplets. The particles may be injection-locked by coupling an injection beam into a particle while pumping so that an injection seed is amplified to develop into laser oscillation. A microscopy system may include a pump source, beam scanner, spectrometer with resolution of less than 1 nanometer and acquisition rate of more than 1 kilohertz, and spectral analyzer configured to distinguish spectral peaks of laser output from broadband background.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: March 29, 2022
    Assignee: THE GENERAL HOSPITAL CORPORATION
    Inventor: Seok Hyun Yun
  • Patent number: 11283238
    Abstract: A method of generating a light-matter hybrid species of charged polaritons at room temperature includes providing an organic semiconductor microcavity being a doped organic semiconductor sandwiched in a microcavity capable of generating an optical resonance and coupling light to the polaron optical transition in the organic semiconductor microcavity thereby forming polaron-polaritons. The doped organic semiconductor may be a hole/electron transport material having a polaron absorption coefficient exceeding 102 cm?1 and capable of generating a polaron optical transition with a linewidth smaller than a predetermined threshold. The optical resonance of the microcavity has a resonance frequency matched with the polaron optical transition.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 22, 2022
    Assignee: The Penn State Research Foundation
    Inventors: Chiao-Yu Cheng, Noel C. Giebink
  • Patent number: 11271368
    Abstract: A semiconductor laser according to one embodiment of the present disclosure includes a semiconductor stack. The semiconductor stack includes, in the following order, a first cladding layer, an active layer, one or a plurality of low-concentration impurity layers, a contact layer, and a second cladding layer that includes a transparent conductive material. The semiconductor stack further has, in a portion including the contact layer, a ridge extending in a stacked in-plane direction. Each low-concentration impurity layer has an impurity concentration of 5.0×1017 cm?3 or less, and a total thickness of the low-concentration impurity layer is 250 nm or more and 1000 nm or less. A distance between the second cladding layer and the low-concentration impurity layer closest to the second cladding layer is 150 nm or less.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: March 8, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Kota Tokuda, Hideki Watanabe, Takayuki Kawasumi
  • Patent number: 11271372
    Abstract: An optical apparatus includes a light emitting device and a substrate. The light emitting device includes a base including a main body portion containing a ceramic material and wire portions exposed from the main body portion on the lower surface of the base, a lid portion fixed to the base so that a hermetically sealed space is defined by the lid portion and the base, a first semiconductor laser element emitting blue light and provided in the hermetically sealed space, a second semiconductor laser element emitting red light and provided in the hermetically sealed space, a third semiconductor laser element emitting green light and provided in the hermetically sealed space, and a collimate lens arranged on paths of the blue light, the red light and the green light. The substrate includes first metallic films electrically connected with the base of the light emitting device via the wire portions.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 8, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Soichiro Miura, Kazuma Kozuru
  • Patent number: 11271362
    Abstract: The laser device includes a substrate, a laser element disposed on the substrate for emitting a laser light ray, a light guide member disposed on the substrate, and a wavelength conversion layer. The light guide member is light-transmissible and thermally conductive, and has at least one reflection surface for reflecting the laser light ray from the laser element so as to change travelling direction of the laser light ray. The wavelength conversion layer converts wavelength of the laser light ray from the light guide member to result in a laser beam, and contacts the light guide member so that heat from the wavelength conversion layer is transferred to the substrate through the light guide member.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: March 8, 2022
    Assignee: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Hui Chen, Junpeng Shi, Xinglong Li, Chi-Wei Liao, Weng-Tack Wong, Chih-Wei Chao, Chen-ke Hsu
  • Patent number: 11271356
    Abstract: A microchip laser and a handpiece including the microchip laser. The microchip laser includes a laser medium with input and output facets. The input facet is coated with a highly reflective dielectric coating at microchip laser wavelength and highly transmissive at pump wavelength. The output facet is coated with a partially reflective at microchip laser wavelength dielectric coating. A saturable absorber attached by intermolecular forces to output facet of microchip laser. A handpiece for skin treatment includes the microchip laser.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: March 8, 2022
    Assignee: CANDELA CORPORATION
    Inventors: Xiaoming Shang, Christopher J. Jones, Zhi Huang
  • Patent number: 11271370
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: March 8, 2022
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines