Abstract: A method provides a structure that includes dual-gated metal-oxide semiconducting field effect transistor (MOSFET). The dual-gated MOSFET can be fabricated according to current CMOS processing techniques. The method includes forming a body region of the dual-gated MOSFET as a fully depleted structure. The structure includes two gates which are positioned on opposite sides of the opposing sides of the body region. Further, the structure operates as one device where the threshold voltage of one gate depends on the bias of the other gate. Thus, the structure yields a small signal component in analog circuit applications which depends on the product of the signals applied to the gates, and not simply one which depends on the sum of the two signals.
Abstract: A drain-extended metal-oxide-semiconductor transistor (40) with improved robustness in breakdown characteristics is disclosed. Field oxide isolation structures (29c) are disposed between the source region (30) and drain contact regions (32a, 32b, 32c) to break the channel region of the transistor into parallel sections. The gate electrode (35) extends over the multiple channel regions, and the underlying well (26) and thus the drift region (DFT) of the transistor extends along the full channel width. Channel stop doped regions (33) underlie the field oxide isolation structures (29c), and provide conductive paths for carriers during breakdown. Parasitic bipolar conduction, and damage due to that conduction, is therefore avoided.
Abstract: A capacitor including a first electrode selected from a group consisting of transition metals, conductive metal-oxides, alloys thereof, and combinations thereof. The capacitor also includes a second electrode and a dielectric between the first and second electrodes. The present invention may be used to form devices, such as memory devices and processors. The present invention also includes a method of making a capacitor. The method includes forming a first electrode selected from a group consisting of transition metals, conductive metal-oxides, and alloys thereof. The method also includes forming a second electrode and forming a dielectric between the first and second electrodes.
Abstract: A new process is provided which is an extension and improvement of present processing for the creation of a solder bump. After the layers of Under Bump Metal and a layer of solder metal have been created in patterned and etched format and overlying the contact pad, following a conventional processing sequence, a layer of polyimide is deposited. The solder flow is performed using the thickness of the deposited layer of polyimide to control the height of the column underneath the reflown solder.
Abstract: In an active matrix type light emitting device, a top surface exit type light emitting device in which an anode formed at an upper portion of an organic compound layer becomes a light exit electrode is provided. In a light emitting element made of a cathode, an organic compound layer and an anode, a protection film is formed in an interface between the anode that is a light exit electrode and the organic compound layer. The protection film formed on the organic compound layer has transmittance in the range of 70 to 100%, and when the anode is deposited by use of the sputtering method, a sputtering damage to the organic compound layer can be inhibited from being inflicted.
Type:
Grant
Filed:
October 29, 2002
Date of Patent:
October 18, 2005
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: A semiconductor device comprises a semiconductor substrate, an interlayer insulating layer formed above the semiconductor substrate, a first metal interconnection embedded in the interlayer insulating layer with a surface thereof exposed to the same plane as a surface of the interlayer insulating layer, a diffusion preventive layer formed on at least the first metal interconnection to prevent diffusion of a metal included in the first metal interconnection, a nitrogen-doped silicon oxide layer formed on the diffusion preventive layer, a fluorine-doped silicon oxide layer formed on the nitrogen-doped silicon oxide layer, and a second metal interconnection embedded in the fluorine-doped silicon oxide layer with a surface thereof exposed to the same plane as a surface of the fluorine-doped silicon oxide layer, and electrically connected to the first metal interconnection.
Abstract: A ferroelectric memory device, e.g., nonvolatile, has an effective layout by eliminating a separate cell plate line. The ferroelectric memory device includes first and second split word lines formed over first and second active regions of a semiconductor substrate, and the first and second active regions are isolated from each other. Source and drain regions are formed in the first active region on both sides of the first split word line and the second active region on both sides of the second split word line. A conductive barrier layer, a first capacitor electrode and a ferroelectric layer are sequentially formed on the first and second split word lines. Two second capacitor electrodes with one connected to one of the source and drain regions of the second active region is formed over the first split word line. The other one is connected to one of the source and drain regions of the first active region and is formed over the second split word line.
Abstract: An optical semiconductor device includes a semiconductor laser having an equivalent refractive index nc; and a low-reflective coating film disposed on one end face of the semiconductor laser. The low-reflective coating film includes a first-layer coating film having a refractive index n1 and a thickness d1; and a second-layer coating film having a refractive index n2 and a thickness d2. n0 and ?0 denote refractive index of free space on a surface of the second-layer coating film and the wavelength of laser light produced by the semiconductor laser. Both a real part and an imaginary part of amplitude reflectance, determined by the wavelength ?0, the refractive indexes n1 and n2, and the thicknesses d1 and d2, are zero and only one of refractive indexes n1 and n2 is smaller than the square root of a product of the refractive indexes nc and n0.
Abstract: Container structures for use in integrated circuits and methods of their manufacture. The container structures have a dielectric cap on the top of a conductive container to reduce the risk of container-to-container shorting by insulating against bridging of conductive debris across the tops of adjacent container structures. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract: A method for the formation of rhodium films with good step coverage is disclosed. Rhodium films are formed by a low temperature atomic layer deposition technique using a first gas of rhodium group metal precursor followed by an oxygen exposure. The invention provides, therefore, a method for forming smooth and continuous rhodium films which also have good step coverage and a reduced carbon content.
Abstract: A method of detecting spatially correlated variations that may be used for detecting statistical outliers in a production lot of integrated circuits to increase the average service life of the production lot includes measuring a selected parameter of each of a plurality of electronic circuits replicated on a common surface; calculating a difference between a value of the selected parameter at a target location and a value of the selected parameter an identical relative location with respect to the target location for each of the plurality of electronic circuits to generate a distribution of differences; calculating an absolute value of the distribution of differences; and calculating an average of the absolute value of the distribution of differences to generate a representative value for the residual for the identical relative location.
Type:
Grant
Filed:
August 13, 2003
Date of Patent:
September 13, 2005
Assignee:
LSI Logic Corporation
Inventors:
Robert Madge, Kevin Cota, Bruce Whitefield
Abstract: A method of epitaxially growing a SiC film on a Si substrate, including: (a) supplying a raw material gas containing a gas having P (phosphorus) element and a gas having B (boron) element on a Si substrate, and thereby synthesizing an amorphous BP thin film having a thickness of 5 nm or more and 100 nm or less on the Si substrate; (b) further supplying a raw material gas containing a gas having P element and a gas having B element on the Si substrate, and thereby synthesizing a cubic boron phosphide single crystal film having a thickness of 5 nm or more and 1000 nm or less on the Si substrate; and (c) supplying a gas having carbon element and a gas having silicon element on the Si substrate thereon the BP single crystal film is formed, and thereby synthesizing a beta-SiC single crystal film or an amorphous SiC film having a thickness of 1 nm or more and several hundreds nanometers or less on the cubic boron phosphide single crystal film on the Si substrate.
Abstract: NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
Abstract: A method of fabricating an electrostatic actuator with an intrinsic stress gradient is provided. An electrode is formed on a substrate and a support layer is formed over the electrode. A metal layer is deposited onto the support layer via a deposition process. Deposition process conditions are varied in order to induce a stress gradient into the metal layer. The intrinsic stress in the metal layer increases in the direction from the bottom to the top of the metal layer. The support layer under the electrode is removed to release the electrostatic actuator.
Abstract: An electronic device, in which a flat plate semiconductor and dumets connected to surface electrodes on the front and back surfaces of the semiconductor and to lead wires are encapsulated in a glass tube.
Abstract: An electrooptical substrate device has pixel electrodes and pixel-switching TFTs connected thereto, on a substrate. The TFT is a P-channel TFT of an SOI structure that does not have a body contact. Due to this, a transistor is architected in each pixel that is suited to broaden the opening area in each pixel, and having comparatively high performance, thereby enabling bright, high-quality image display.
Abstract: A method for producing an ultraviolet light (UV) transmissive silicon nitride layer in a plasma enhanced chemical vapor deposition (PECVD) reactor is presented. The UV transmissive film is produced by reducing, in comparison to a standard silicon nitride process, a flow rate of the silane and ammonia gas precursors to the PECVD reactor, and significantly increasing a flow rate of nitrogen gas to the reactor. The process reduces the concentration of Si—H bonds in the silicon nitride film to provide UV transmissivity. Further, the amount of nitrogen in the film is greater than in a standard PECVD silicon nitride film, and as a percentage constitutes a greater part of the film than silicon. The film has excellent step coverage and a low number of pinhole defects. The film may be used as a passivation layer in a UV erasable memory integrated circuit.
Abstract: Methods are provided that use disposable and permanent films to dope underlying layers through diffusion. Additionally, methods are provided that use disposable films during implantation doping and that provide a surface from which to dope underlying materials. Some of these disposable films can be created from a traditionally non-disposable film and made disposable. In this manner, solvents may be used that do not etch underlying layers of silicon-based materials. Preferably, deep implantation is performed to form source/drain regions, then an anneal step is performed to activate the dopants. A conformal layer is deposited and implanted with dopants. One or more anneal steps are performed to create very shallow extensions in the source/drain regions.
Type:
Grant
Filed:
August 16, 2002
Date of Patent:
August 2, 2005
Assignee:
International Business Machines Corporation
Inventors:
Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, William H-L Ma, Patricia M. Marmillion, Donald W. Rakowski
Abstract: A method of forming a capacitor is disclosed. The method includes forming a first electrode having a non-smooth surface and selected from the group consisting of transition metals, conductive oxides, alloys thereof, and combinations thereof. The method further includes forming a second electrode, and forming a dielectric between the first and second electrodes.
Abstract: A method and apparatus for achieving a consistent depth of immersion of a semiconductor element into an exposed surface of an adhesive material pool when applying the adhesive material, conductive or non-conductive, to the semiconductor element or portion thereof. The consistent depth of immersion is defined by a stop which is attached to a reservoir used to form the adhesive material pool, attached to a stencil which is used in conjunction with the reservoir to form a level upper surface on the adhesive material, or operates independently from the reservoir and/or stencil.