Patents Examined by Mohammed R Alam
  • Patent number: 11205712
    Abstract: A method of manufacturing a low temperature polysilicon thin film includes: forming a buffer layer on a substrate; forming a first silicon layer on the buffer layer; forming a second silicon layer on the first silicon layer, and forming a substrate impurity barrier interface between the first silicon layer and the second silicon layer, wherein the second silicon layer is thicker than the first silicon layer; and annealing the first silicon layer and the second silicon layer to form a polysilicon layer.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 21, 2021
    Assignee: HKC CORPORATION LIMITED
    Inventor: Huailiang He
  • Patent number: 11201234
    Abstract: A high-electron mobility transistor (HEMT) includes a substrate, a group III-V channel layer, a group III-V barrier layer, a group III-V cap layer, a source electrode, a first drain electrode, a second drain electrode, and a connecting portion. The group III-V channel layer, the group III-V barrier layer, and the group III-V cap layer are sequentially disposed on the substrate. The source electrode is disposed at one side of the group III-V cap layer, and the first and second drain electrodes are disposed at another side of the group III-V cap layer. The bottom surface of the first drain electrode is separated from the bottom surface of the second drain electrode, and the composition of the first drain electrode is different from the composition of the second drain electrode. The connecting portion is electrically coupled to the first drain electrode and the second drain electrode.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: December 14, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chia-Ching Huang, Chih-Yen Chen, Chun-Yi Wu, Chih-Jen Hsiao
  • Patent number: 11201222
    Abstract: The present disclosure provides a semiconductor device and a fabrication method thereof. The semiconductor device includes a substrate, a barrier layer disposed above the substrate, and a dielectric layer disposed on the barrier layer and defining a first recess. The semiconductor device further includes a spacer disposed within the first recess and a gate disposed between a first portion of the spacer and a second portion of the spacer, wherein the gate defining a first recess.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 14, 2021
    Assignee: Innoscience (Zhuhai) Technology Co., Ltd.
    Inventor: King Yuen Wong
  • Patent number: 11195835
    Abstract: A memory device includes a memory cell, a writing transistor, and a reading transistor. The memory cell includes a semiconductor substrate, a tunneling layer, a storage layer, a first electrode, a second electrode, and a third electrode. The tunneling layer is over the semiconductor substrate. The storage layer is on the tunneling layer. The first electrode is on the storage layer. The second electrode is on the tunneling layer. The storage layer has a sidewall facing the second electrode. The third electrode is spaced apart from the second electrode. The writing transistor is electrically connected to the first electrode of the memory cell. The reading transistor is electrically connected to the second electrode of the memory cell.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: December 7, 2021
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Jenn-Gwo Hwu, Bo-Jyun Chen, Kuan-Wun Lin
  • Patent number: 11195841
    Abstract: A method for manufacturing an integrated circuit is provided. The method includes depositing a floating gate electrode film over a semiconductor substrate; patterning the floating gate electrode film into at least one floating gate electrode having at least one opening therein; depositing a control gate electrode film over the semiconductor substrate to overfill the at least one opening of the floating gate electrode; and patterning the control gate electrode film into at least one control gate electrode over the floating gate electrode.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Chung Jen, Yu-Chu Lin, Cheng-Hsiang Wang, Yi-Ling Liu
  • Patent number: 11189435
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate a switch device that shifts frequency of a resonator in a quantum device are provided. According to an embodiment, a device can comprise a readout resonator coupled to a qubit. The device can further comprise a switch device formed across the readout resonator that shifts frequency of the readout resonator based on position of the switch device. According to another embodiment, a device can comprise a bus resonator coupled to a plurality of qubits. The device can further comprise a switch device formed across the bus resonator that shifts frequency of the bus resonator based on position of the switch device.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Firat Solgun, Jerry M. Chow
  • Patent number: 11183463
    Abstract: Chip package method and chip package structure are provided. The chip package method includes: providing a transparent substrate including a first side and a second side; coating the first side of the transparent substrate with an organic polymer material layer; depositing a protective layer on the organic polymer material layer; forming alignment parts on the protective layer; attaching a plurality of chips including metal pins; forming an encapsulating layer on the protective layer; polishing the encapsulating layer to expose the metal pins; forming a first insulating layer; forming first through holes in the first insulating layer; forming metal parts extending along sidewalls of the first through holes; and irradiating the second side of the transparent substrate by a laser to lift off the transparent substrate. The metal parts are insulated from each other and electrically connected to the metal pins.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 23, 2021
    Assignee: Shanghai AVIC OPTO Electronics Co., Ltd.
    Inventors: Kerui Xi, Feng Qin, Jine Liu, Xiaohe Li, Tingting Cui
  • Patent number: 11183566
    Abstract: A device is described herein. The device comprises a unit cell of a silicon carbide (SiC) substrate. The unit cell comprises: a trench in a well region having a second conduction type. The well region is in contact with a region having a first conduction type to form a p-n junction. A width of the trench is less than 1.0 micrometers (?m). A width of the unit cell is one of less than and equal to 5.0 micrometers (?m). The device comprises a source region comprising the first conduction type. The device further comprises a metal oxide semiconductor field effect transistor component. The device described herein comprises a reduced unit cell pitch and reduced channel resistance without any compromise in channel length. The device comprises an ILD opening greater than or equal to width of the trench.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: November 23, 2021
    Assignee: GeneSiC Semiconductor Inc.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Patent number: 11183595
    Abstract: A thin film transistor according to one embodiment comprises a gate electrode; a semiconductor layer being formed using amorphous silicon and comprising a region overlapping with the gate electrode; a gate insulating layer; and a source electrode and a drain electrode facing each other with a predetermined interval therebetween. The gate electrode comprises a first layer having a first work function; and a second layer having a second work function and being interposed between the first layer and the gate insulating layer. The semiconductor layer comprises an intrinsic region being formed with non-doped amorphous silicon; and a low concentration impurities region. The second work function is less than the first work function when n-type impurities are contained in the low concentration impurities region, while the second work function is greater than the first work function when p-type impurities are contained in the low concentration impurities region.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: November 23, 2021
    Assignee: SAKAI DISPLAY PRODUCTS CORPORATION
    Inventor: Hiroyuki Ohta
  • Patent number: 11177297
    Abstract: An array substrate, a manufacturing method thereof, and a display device are provided. The array substrate includes a base substrate and a thin film transistor on the base substrate; a light shielding layer is disposed between the thin film transistor and the base substrate, and the light shielding layer includes a light shielding metal layer and a light reflection adjusting layer which are stacked on the base substrate, the light reflection adjusting layer covers the light shielding metal layer, and a reflectance of the light reflection adjusting layer is lower than a reflectance of the light shielding metal layer.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: November 16, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Bin Zhang, Yu Cheng Chan, Tingting Zhou, Xiaolong He
  • Patent number: 11171223
    Abstract: A method for manufacturing a semiconductor device and an integrated semiconductor device, said method comprising: providing an epitaxial layer having a first region and a second region, forming, in the first region, at least two second doping-type deep wells, and forming, in the second region, at least two second doping-type deep wells; forming a first dielectric island between the second doping-type deep wells and forming a second dielectric island on the second doping-type deep wells; forming a first doping-type trench on two sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; and forming a separated first doping-type source region by using the second dielectric island as a mask, the first doping-type trench extending, in the first region, transversally to the first doping-type source region.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 9, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11158639
    Abstract: An asymmetric fin field-effect transistor (FinFET) in a memory device, a method for fabricating the FinFET and a semiconductor device are disclosed. In the provided FinFET and method, each of the active areas comprises a fin, a length of a first end of the fin on a first side of the active area and covered by the word line being different from a length of a second end of the fin on a second side of the active area and covered by the word line. For this reason, the present invention allows reduced process difficulty. In addition, the different lengths of the word lines can induce a weaker unidirectional electric field which suffers from much less current leakage, compared to a bidirectional electric field created in word lines with equal such length.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: October 26, 2021
    Assignee: Changxin Memory Technologies, Inc.
    Inventors: Rongfu Zhu, Dingyou Lin
  • Patent number: 11158736
    Abstract: A MOSFET structure and a manufacturing method thereof are provided. The structure includes a substrate, a well region of a first conductivity type, a first trench formed on a surface of the well region of the first conductivity type and extending downwards to a well region of a second conductivity type, a source disposed in the well region of the second conductivity type and under the first trench, a gate oxide layer disposed on an inner surface of the first trench, a polysilicon gate disposed on the gate oxide layer, a conductive plug extending downwards from above the first trench and being in contact with the well region of the second conductivity type after extending through the source, an insulation oxide layer filled in the first trench between the conductive plug and the polysilicon gate, and a drain disposed outside the first trench and obliquely above the source.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 26, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Tse-Huang Lo
  • Patent number: 11158730
    Abstract: A method of forming a field effect transistor (FET) includes performing an oxidation on a nanosheet structure having alternating sheets of silicon and silicon germanium. An oxide etch is performed to remove portions of the sheets of silicon germanium. Other embodiments are also described herein.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Patent number: 11158737
    Abstract: Provided in the present invention are an LDMOS component, a manufacturing method therefor, and an electronic device, comprising: a semiconductor substrate (100); a drift area (101) provided in the semiconductor substrate; a gate electrode structure (103) provided on a part of the surface of the semiconductor substrate and covers a part of the surface of the drift area; a source electrode (1052) and a drain electrode (1051) respectively provided in the semiconductor substrate on either side of the gate electrode structure, where the drain electrode is provided in the drift area and is separated from the gate electrode structure; a metal silicide barrier layer (106) covering the surface of at least a part of the semiconductor substrate between the gate electrode structure and the drain electrode; and a first contact hole (1081) provided on the surface of at least a part of the metal silicide barrier layer.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: October 26, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Huajun Jin, Guipeng Sun, Hongfeng Jin
  • Patent number: 11152511
    Abstract: A thin-film transistor and a display panel are provided in which current characteristics of the thin-film transistor are improved by a dual gate electrode structure, and the output characteristics of the thin-film transistor are improved by dividing the top gate electrode (or bottom gate electrode) of the dual gate electrode into two electrodes and applying a back bias voltage to the top gate electrode adjacent to a source region. A high-resolution display panel or a transparent display panel is realized by increasing the aperture ratio (or transmittance) of the display panel using the highly integrated high-current device.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: October 19, 2021
    Assignee: LG Display Co., Ltd.
    Inventors: SunWook Ko, KumMi Oh
  • Patent number: 11152364
    Abstract: A semiconductor structure includes a substrate having a first region and a second region, an epitaxial layer above the substrate, a first device on the first region, a second device on the second region and an isolation structure on the substrate. The first device includes a first gate electrode, a first source electrode and a first drain electrode disposed at two opposite sides of the first gate electrode. A dielectric layer disposed on the epitaxial layer covers the first gate electrode. The second device includes a second gate electrode disposed on the dielectric layer, second source and drain electrodes disposed at two opposite sides of the second gate electrode. The second source electrode is electrically connected to the first drain electrode. Also, the portions of the epitaxial layer respectively disposed in the first and second regions are isolated from each other by the isolation structure.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 19, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Shin-Cheng Lin
  • Patent number: 11145674
    Abstract: A 3D memory device includes a substrate, stacked structures formed on the substrate, common source line (CSL) contacts, and NOR flash memories. The substrate has CSLs and memory cell regions alternately arranged along one direction in parallel. The stacked structures are located on the memory cell regions and include a ground select line (GSL) layer and a word line (WL) layer. The CSL contacts are disposed along another direction to connect the CSLs. The NOR flash memories are disposed in the memory cell regions, and each of the NOR flash memories includes at least an epitaxial pillar through the stacked structure, a charge-trapping layer located between the epitaxial pillar and the WL layer, and a high-k layer located between the charge-trapping layer and the WL layer. The epitaxial pillar has a retracted sidewall at a position passing through the GSL layer.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: October 12, 2021
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Wei-Liang Lin, Wen-Jer Tsai
  • Patent number: 11145511
    Abstract: A power semiconductor device and a method of fabricating such a power semiconductor device are disclosed. In the method, spacers are formed, which cover sidewalls of a source polysilicon layer and reside on trench portions around the source polysilicon layer. As such, a contact is allowed to be directly formed above the source polysilicon layer, eliminating the need for a special photomask for defining a connection between the contact and the gate electrode, reducing the number of required steps, lowering the process cost and avoiding the risk of contact of the subsequently-formed contact above the source polysilicon layer with a gate polysilicon layer. With the spacers protecting a second oxide layer, during the subsequent formation of a source electrode, the implantation of some n-type ions into the second oxide layer, which may degrade the properties of the second oxide layer, is prevented.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: October 12, 2021
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventor: Xue Gao
  • Patent number: 11133229
    Abstract: A method includes forming a gate dielectric layer on a semiconductor fin, and forming a gate electrode over the gate dielectric layer. The gate electrode extends on sidewalls and a top surface of the semiconductor fin. A gate spacer is selectively deposited on a sidewall of the gate electrode. An exposed portion of the gate dielectric layer is free from a same material for forming the gate spacer deposited thereon. The method further includes etching the gate dielectric layer using the gate spacer as an etching mask to expose a portion of the semiconductor fin, and forming an epitaxy semiconductor region based on the semiconductor fin.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Bo-Yu Lai, Bo-Cyuan Lu, Chi On Chui, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen