Patents Examined by Nathan W. Ha
  • Patent number: 10930612
    Abstract: A copper paste for pressureless bonding is a copper paste for pressureless bonding, containing: metal particles; and a dispersion medium, in which the metal particles include sub-micro copper particles having a volume average particle diameter of greater than or equal to 0.01 ?m and less than or equal to 0.8 ?m, and micro copper particles having a volume average particle diameter of greater than or equal to 2.0 ?m and less than or equal to 50 ?m, and the dispersion medium contains a solvent having a boiling point of higher than or equal to 300° C., and a content of the solvent having a boiling point of higher than or equal to 300° C. is greater than or equal to 2 mass % on the basis of a total mass of the copper paste for pressureless bonding.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: February 23, 2021
    Assignee: Showa Denko Materials Co., Ltd.
    Inventors: Hideo Nakako, Kazuhiko Kurafuchi, Yoshinori Ejiri, Dai Ishikawa, Chie Sugama, Yuki Kawana
  • Patent number: 10923576
    Abstract: A method and structure for providing a pre-deposition treatment (e.g., of a work-function layer) to accomplish work function tuning. In various embodiments, a gate dielectric layer is formed over a substrate, and a work-function metal layer is deposited over the gate dielectric layer. The work-function metal layer has a first thickness. A pre-treatment process of the work-function metal layer may then performed, where the pre-treatment process removes an oxidized layer from a top surface of the work-function metal layer to form a treated work-function metal layer. The treated work-function metal layer has a second thickness less than the first thickness. In various embodiments, after performing the pre-treatment process, another metal layer is deposited over the treated work-function metal layer.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Cheng-Yen Tsai, Da-Yuan Lee
  • Patent number: 10923472
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate, a plurality of fins comprising a first fin, a second fin, a third fin, a fourth fin and a fifth fin, each of the plurality of protruding from the substrate in a first direction, and spaced apart from one another in a second direction that intersects the first direction and a plurality of trenches comprising a first trench, a second trench, a third trench and a fourth trench, each of the plurality of trenches being formed between adjacent fins of the plurality of fins, wherein variation of a first width of the first trench and a third width of the third trench is smaller than a first variation, wherein variation of a second width of the second trench and a fourth width of the fourth trench is smaller than a second variation, and wherein the second variation is greater than the first variation.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: February 16, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Min Kim, Dong Won Kim, Geum Jong Bae
  • Patent number: 10903364
    Abstract: Embodiments are generally directed to a semiconductor device with released source and drain. An embodiment of a method includes etching a buffer layer of a semiconductor device to form a gate trench under a gate channel portion of a channel layer of the device; filling the gate trench with an oxide material to form an oxide isolation layer; etching one or more source/drain contact trenches in an interlayer dielectric (ILD) layer for source and drain regions of the device; etching the oxide isolation layer within the one or more source/drain contact trenches to form one or more cavities under a source/drain channel in the source and drain regions, wherein the etching of each contact trench is to expose all sides of the source/drain channel; and depositing contact metal in the one or more contact trenches, including depositing the contact metal in the cavities under the source/drain channel.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: January 26, 2021
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Sanaz K. Gardner, Chandra S. Mohapatra, Matthew V. Metz, Gilbert Dewey, Sean T. Ma, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10903217
    Abstract: An anti-fuse memory cell may include a substrate including first and second conductivity regions and an isolation region at least partially within the substrate, a program gate over the substrate, a program gate oxide layer over the isolation region and between the program gate and the substrate, a first channel region arranged laterally between the first conductivity region and the isolation region, a second channel region arranged laterally between the second conductivity region and the isolation region, a first select gate arranged over the substrate and over the first channel region and a second select gate arranged over the substrate and over the second channel region. The program gate oxide layer may be configured to break down to allow conduction between the program gate and at least one of the channel regions upon providing a program voltage difference between the program gate and at least one of the channel regions.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 26, 2021
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Xinshu Cai, Shyue Seng Tan, Eng Huat Toh
  • Patent number: 10896873
    Abstract: A processor assembly and a system including a processor assembly are disclosed. The processor assembly includes an interposer disposed on a substrate, an integrated circuit disposed on the interposer, a memory circuit disposed on the interposer and coupled to the integrated circuit, and a capacitor embedded in the interposer. The capacitor includes at least a first non-planar conductor structure and a second non-planar conductor structure separated by a non-planar dielectric structure. The capacitor includes a first capacitor terminal electrically coupling the first non-planar conductor structure to a first voltage terminal in the integrated circuit. The capacitor includes a second capacitor terminal electrically coupling the second non-planar conductor structure to a second voltage terminal in the integrated circuit. The capacitor includes an oxide layer electrically isolating the capacitor from the interposer.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: January 19, 2021
    Assignee: Google LLC
    Inventors: Woon Seong Kwon, Nam Hoon Kim, Teckgyu Kang
  • Patent number: 10886160
    Abstract: An electronic device, e.g. an integrated circuit, includes a semiconductor substrate having a top surface and an area of the semiconductor substrate surrounded by inner and outer trench rings. The inner trench ring includes a first dielectric liner that extends from the substrate surface to a bottom of the inner trench ring, the first dielectric liner electrically isolating an interior region of the inner trench ring from the semiconductor substrate. The outer trench ring surrounds the inner trench ring and includes a second dielectric liner that extends from the substrate surface to a bottom of the outer trench ring. The second dielectric liner includes an opening at a bottom of the outer trench ring, the opening providing a path between an interior region of the outer trench ring and the semiconductor substrate.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: January 5, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Alexei Sadovnikov, Scott Kelly Montgomery
  • Patent number: 10886367
    Abstract: A semiconductor structure is provided that includes active semiconductor fins that have a uniform fin channel height. The uniform fin channel height is achieved by forming semiconductor fins (active and sacrificial) on an entirety of semiconductor substrate thus there is no loading effect during a subsequently performed dielectric etch step which can lead to fin channel height variation and ultimately variation in device characteristics. A trench isolation structure is located adjacent to the active semiconductor fins. The trench isolation structure includes at least one dielectric plug having a second width and a dielectric pillar having a first width located on each side of the at least one dielectric plug. The second width of the at least one dielectric plug is less than the first width of each dielectric pillar, yet equal to a width of each semiconductor fin.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: January 5, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Zhenxing Bi, Dexin Kong
  • Patent number: 10879346
    Abstract: Techniques are disclosed for forming an integrated circuit including a capacitor having a multilayer dielectric stack. For example, the capacitor may be a metal-insulator-metal capacitor (MIMcap), where the stack of dielectric layers is used for the insulator or ‘I’ portion of the MIM structure. In some cases, the composite or multilayer stack for the insulator portion of the MIM structure may include a first oxide layer, a dielectric layer, a second oxide layer, and a high-k dielectric layer, as will be apparent in light of this disclosure. Further, the multilayer dielectric stack may include an additional high-k dielectric layer, for example. Use of such multilayer dielectric stacks can enable increases in capacitance density and/or breakdown voltage for a MIMcap device. Further, use of a multilayer dielectric stack can enable tuning of the breakdown and capacitance characteristics as desired. Other embodiments may be described and/or disclosed.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic
  • Patent number: 10879073
    Abstract: One integrated circuit product disclosed herein includes a first final gate structure for a first transistor device, a second final gate structure for a second transistor device, wherein the first and second transistor devices have a gate width that extends in a gate width direction and a gate length that extends in a gate length direction, and a gate separation structure positioned between the first and second final gate structures, the gate separation structure comprising at least one insulating material. The gate separation structure further has a substantially uniform width in the gate width direction for substantially an entire vertical height of the gate separation structure and a first side surface and a second side surface, wherein an end surface of the first final gate structure contacts the first side surface and an end surface of the second final gate structure contacts the second side surface.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chanro Park, Ruilong Xie, Hui Zang, Laertis Economikos, Andre LaBonte
  • Patent number: 10868160
    Abstract: Provided are a neuromorphic device and a neuromorphic circuit using the neuromorphic device. The neuromorphic device is configured to include a first semiconductor region formed on a substrate in a wall shape or a dumbbell shape; first, second, third, and fourth doped regions sequentially formed in the first semiconductor region; first and second gate insulating film stacks disposed on the respective side surfaces of the second doped region; first and second gate electrodes respectively disposed on the respective side surfaces of the second doped region; the first and second gate electrodes disposed on the respective side surface of the second doped region, the first and second gate electrodes being electrically insulated from the second doped, region by the first and second gate insulating film stacks; and first and second electrodes electrically connected to the first and fourth doped regions, respectively.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: December 15, 2020
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Jong-Ho Lee, Sung Yun Woo
  • Patent number: 10868010
    Abstract: A complementary metal oxide semiconductor (CMOS) device includes a high-resistivity substrate; a first CMOS structure disposed in a first region of the high-resistivity substrate; and a second CMOS structure of a same semiconductor type as the first CMOS structure and disposed in a second region of the high-resistivity substrate spaced apart from the first region. The high-resistivity substrate is disposed between the first CMOS structure and the second CMOS structure to separate the first CMOS structure from the second CMOS structure.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 15, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Jong Myeong Kim
  • Patent number: 10868185
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductive substrate, and a first contact plug formed on the semiconductive substrate. The semiconductor structure further includes a dielectric layer encircling the first contact plug. The semiconductor structure further includes a multilayer structure deposited on the dielectric layer and encircling the first contact plug. The dielectric layer produces a tensile stress pulling the first contact plug outward along a width direction. The multilayer structure produces a compressive stress that compensates for the tensile stress caused by the dielectric layer. A method of forming the semiconductor structure is also provided.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chin-Shan Wang, Yi-Miaw Lin, Ming-Yih Wang
  • Patent number: 10868011
    Abstract: A semiconductor device is provided in the disclosure, including a substrate, multiple parallel fins protruding from the substrate and isolated by trenches, and a device insulating layer on the trenches between two fins, wherein the trench is provided with a central first trench and two second trenches at both sides of the first trench, and a depth of the first trench is deeper than a depth of the second trench, and the device insulating layer is provided with a top plane, a first trench and a second trench, and the fins protrude from the top plane, and the bottom surface of the second trench is lower than the bottom surface of the first trench.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: December 15, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Yi Wang, Tien-Shan Hsu, Cheng-Pu Chiu, Yao-Jhan Wang
  • Patent number: 10861740
    Abstract: A semiconductor device includes a gate structure disposed over a substrate, and a first dielectric layer disposed over the substrate, including and over the gate structure. A first metal feature is disposed in the first dielectric layer, including an upper portion having a first width and a lower portion having a second width that is different than the first width. A dielectric spacer is disposed along the lower portion of the first metal feature, wherein the upper portion of the first metal feature is disposed over the dielectric spacer. A second dielectric layer is disposed over the first dielectric layer, including over the first metal feature and a second metal feature extends through the second dielectric layer to physically contact with the first metal feature. A third metal feature extends through the second dielectric layer and the first dielectric layer to physically contact the gate structure.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Hsun Wang, Hsien-Cheng Wang, Mei-Yun Wang
  • Patent number: 10854522
    Abstract: A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one tip-to-side short or leakage, at least one corner short or leakage, and at least one via open or resistance, where such measurements are obtained from non-contact pads associated with respective tip-to-side short, corner short, and via open test areas.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: December 1, 2020
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 10840432
    Abstract: A method for fabricating semiconductor device includes the steps of: forming an inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the IMD layer; forming a bottom electrode layer on the IMD layer, wherein the bottom electrode layer comprises a gradient concentration; forming a free layer on the bottom electrode layer; forming a top electrode layer on the free layer; and patterning the top electrode layer, the free layer, and the bottom electrode layer to form a magnetic tunneling junction (MTJ).
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: November 17, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chia-Chang Hsu, Chen-Yi Weng, Chin-Yang Hsieh, Jing-Yin Jhang
  • Patent number: 10840372
    Abstract: An LDMOS device includes a handle portion having a buried dielectric layer and a semiconductor layer thereon doped a second dopant type. A drift region doped a first type is within the semiconductor layer providing a drain extension. A gate stack includes a gate electrode on a gate dielectric layer on respective sides of a junction with the drift region. A DWELL region is within the semiconductor layer. A source region doped the first type is within the DWELL region. A drain region doped the first type is within the drift region. A first partial buried layer doped the second type is in a first portion of the drift region including under the gate electrode. A second partial buried layer doped the first type is in a second portion of the drift region including under the drain.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: November 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Zachary K. Lee
  • Patent number: 10832995
    Abstract: A power module (10) having a leadframe (20), a power semiconductor (30) arranged on the leadframe (20), a base plate (40) for dispersing heat generated by the power semiconductor (30) and a potting compound (50) surrounding the leadframe (20) and the power semiconductor (30), that physically connects the power semiconductor (30) and/or the leadframe (20) to the base plate(40).
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 10, 2020
    Assignee: Danfoss Silicon Power GmbH
    Inventors: Ronald Eisele, Frank Osterwald
  • Patent number: 10818785
    Abstract: A charge sensing device for sensing charge variations in a charge storage area includes: a TFET having at least one sense gate; and a capacitive coupling for coupling the charge storage area with the sense gate.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 27, 2020
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Cem Alper, Mihai Adrian Ionescu, Teodor Rosca