Patents Examined by Patricia Nguyen
  • Patent number: 8564368
    Abstract: The present invention provides a method an apparatus for predistorting an input signal to compensate for non-linearities in an electronic device that operates on the input signal. The invention may be used, for example, to digitally predistort an input signal for a power amplifier in a wireless communication device. The predistorter uses a polynomial approach based on the well-known Volterra series to model the distortion function. A dynamic deviation reduction technique is used to reduce the number of terms in the distortion model and to facilitate implementation. The approach described herein eliminates square functions present in prior art designs and can be implemented using CORDIC circuits.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 22, 2013
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Chunlong Bai
  • Patent number: 8559879
    Abstract: Techniques for transmitting null pilots to support interference estimation in a wireless network are described. A null pilot is non-transmission on designated time-frequency resources by a cell or a cluster of cells supporting cooperative transmission to a UE. The received power of the null pilot from the cell or cluster of cells may be indicative of interference from other cells. In one design, a cell in the cluster may determine resources for sending a null pilot by the cell. The cell may transmit the null pilot (i.e., send no transmissions) on the resources to allow UEs to estimate out-of-cluster interference. Some or all cells in the cluster may transmit null pilots on the same resources. The cell may receive interference and channel information from the UE and may send data transmission to the UE based on the interference and/or channel information. Remaining cells in the cluster may reduce interference to the UE.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: October 15, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Naga Bhushan, Alexei Y. Gorokhov, Mohammad J. Borran, Avneesh Agrawal, Aamod D. Khandekar, Tingfang Ji
  • Patent number: 8558614
    Abstract: An amplification device that amplifies a signal, the amplification device includes an amplification unit that amplifies the signal using supplied power, a variable power supply unit that changes the power supplied to the amplification unit in accordance with an envelope of the signal, a radiation unit that radiates light onto the amplification unit, and a control unit that controls the light to be emitted from the radiation unit in accordance with slope of the envelope of the signal.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Limited
    Inventors: Keiji Masuda, Yoshihiro Nozue, Masayuki Onuki
  • Patent number: 8559881
    Abstract: Aspects of the invention may comprise a control system in communication with a radio frequency (RF) front-end subsystem. The RF front-end subsystem comprises a plurality of antennas coupled to a plurality of wireless transmitters or receivers. Each of the wireless transmitters or receivers is operable to communicate via one or more of a plurality of wireless interfaces in the communication device. The control system is configured to detect, based on interference data provided by the RF front-end system, potential interference by an interfering one of said plurality of wireless transmitters or receivers with operations of an interfered-with one of said plurality of wireless transmitters or receivers. The control system is further configured to mitigate said detected interference operation by providing calibration data to said interfered-with one or more of said plurality of wireless transmitters or receivers.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: October 15, 2013
    Assignee: Broadcom Corporation
    Inventors: John Walley, Prasanna Desai
  • Patent number: 8558609
    Abstract: System and method for amplifying an input signal to generate an output signal. The system includes a current generator, an oscillator, and a comparator. The current generator is configured to receive a first voltage signal, and generate a first current signal based on at least information associated with the first voltage signal and the first reference signal. The oscillator is configured to receive at least the first current signal and a second reference signal, and to generate a second voltage signal based on at least information associated with the first current signal and the second reference signal, the second voltage signal being associated with a modulation frequency. Additionally, the comparator is configured to receive the second voltage signal and a third voltage signal, and to generate a modulation signal related to the modulation frequency based on at least information associated with the second voltage signal and the third voltage signal.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: October 15, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Lieyi Fang, Yunchao Zhang, Tingzhi Yuan
  • Patent number: 8552801
    Abstract: Systems and methods for providing a fully differential amplifier performing common-mode voltage control having reduced area and power requirements are disclosed. The amplifier disclosed comprises an additional input stage at the amplifier input which senses the common mode voltage of the amplifier's inputs and applies internal feedback control to adjust the output common-mode voltage until the input common-mode voltage matches a target voltage and thereby indirectly set the output common-mode voltage. Furthermore the internal common-mode control can be implemented in such a manner as to provide a feed-forward transconductance function in addition to common-mode control if desired. Moreover it is possible to use feedback from other amplifier stages in an amplifier chain to implement common-mode feedback.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 8, 2013
    Assignee: Dialog Semiconductor GmbH.
    Inventor: Andrew Myles
  • Patent number: 8552798
    Abstract: A method for offset compensation of a switched-capacitor amplifier comprises a reset phase (?1) and at least one working phase (?2). An output voltage (Vout) of the amplifier (amp) is fed according to a damped feedback loop gain (AB(1)) to a first amplifier input (ain1) in the reset phase (?1) as a function of an offset voltage (Voff). In the least one working phase (?2), an offset of the amplifier (amp) is compensated as a function of the offset voltage (Voff) by superimposing the output voltage (Vout) onto an input voltage (Vin) of the amplifier (amp) according to a loop gain (AB(2)).
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 8, 2013
    Assignee: AMS AG
    Inventor: Vincenzo Leonardo
  • Patent number: 8547172
    Abstract: Systems and methods can provide an optical transmitter/combiner having improved isolation and signal to noise ratio performance. The input ports can be amplified with single ended amplifiers, attenuated with a loss network, combined and re-amplified with a second amplifier stage. The amplifier distortion performance, loss and gain levels can be chosen such that the second order distortions of the input port amplifier and the amplifier following a combiner are self-cancelling such that the distortion can be reduced. The obtained distortion performance can be reasonable while gain and signal to noise ratio are improved.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 1, 2013
    Assignee: Arris Enterprises, Inc.
    Inventor: Marcel F. Schemmann
  • Patent number: 8547174
    Abstract: Systems and methods can provide an improved broadband linearizer that includes a distortion generator with a bypass path for generating both composite triple beat (CTB) and composite second order (CSO) distortions suitable for linearizing a laser. The linearized laser can be suitable for injection into a communications network such as, for example, a hybrid fiber coaxial (HFC) network, among others.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: October 1, 2013
    Assignee: ARRIS Enterprises, Inc.
    Inventors: Marcel F. Schemmann, Shamsuddin H. Chasmawala
  • Patent number: 8542062
    Abstract: The present invention concerns the field of power amplifiers and in particular the enhancement of the performance of the amplifier by a feedback loop acting on the input signal.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: September 24, 2013
    Assignee: Innovaradio SA
    Inventors: Amirhooshang Farahani Samani, Jeyran Hezaveh, Ali Talebi
  • Patent number: 8542061
    Abstract: The present disclosure relates to a direct current (DC)-DC converter, which includes a charge pump based radio frequency (RF) power amplifier (PA) envelope power supply and a charge pump based PA bias power supply. The DC-DC converter is coupled between RF PA circuitry and a DC power supply, such as a battery. As such, the PA envelope power supply provides an envelope power supply signal to the RF PA circuitry and the PA bias power supply provides a bias power supply signal to the RF PA circuitry. Both the PA envelope power supply and the PA bias power supply receive power via a DC power supply signal from the DC power supply. The PA envelope power supply includes a charge pump buck converter and the PA bias power supply includes a charge pump.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 24, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Patent number: 8536943
    Abstract: A method and apparatus is provided for linearizing the output of a non-linear device, such as a power amplifier. The input signal to the non-linear device is predistorted based on a predistortion model to compensate for distortion introduced by a non-linear device. A wideband feedback signal is generated from the output signal of the non-linear device, and the wideband feedback signal is filtered to generate two or more narrowband distortion signals with predetermined frequencies corresponding to anticipated distortion components in the output signal. Model parameters of the predistortion model are adapted based on the narrowband distortion signals.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: September 17, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventor: Garrick Thomas Irvine
  • Patent number: 8536948
    Abstract: A power amplifier according to the present invention includes: an input-side transformer which has an annular primary coil which is a first metal line and a plurality of linear secondary coils which are second metal lines, and matches input impedance and divides the input signal into a plurality of split signals; push-pull amplifiers each including a pair of transistors for amplifying one of the split signals; and an output-side transformer which has an annular secondary coil which is a third metal line and a plurality of linear primary coils which are fourth metal lines, and combines the amplified split signals and matches output impedance, two input terminals of the pair of transistors being connected to each other via each of the second metal lines and two output terminal of the pair of transistors being connected to each other via each of the fourth metal lines.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 17, 2013
    Assignee: Panasonic Corporation
    Inventors: Yasufumi Kawai, Hiroyuki Sakai
  • Patent number: 8531241
    Abstract: A method is provided for process, voltage, temperature (PVT) stable transfer function calibration in a differential amplifier. The gain resistors of a differential amplifier are initially selected to achieve a flat amplitude transfer function in the first frequency band. After calibration, the degeneration capacitor is connected and tuned until a peaked amplitude transfer function is measured, which is resistant to variations in PVT. As an alternative, the degeneration capacitor is not disconnected during initial calibration. Then, the gain resistors and the degeneration capacitor values are selectively adjusted until the first peaked amplitude transfer function is obtained. The peaked amplitude transfer function remains even more stable to variations in PVT than the flat amplitude calibration method.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: September 10, 2013
    Assignee: Applied Micro Circuits Corporation
    Inventor: Hanan Cohen
  • Patent number: 8531240
    Abstract: Embodiments of power amplification devices are described with a power amplification circuit that has more than one amplifier stage and with at least a first voltage regulation circuit and a second voltage regulation circuit configured that provide regulated voltages to these amplifier stages. The power amplification device includes a threshold detection circuit to get better maximum output power performance while preserving power efficiency. The threshold detection circuit is configured to increase a first voltage adjustment gain of the first voltage regulation circuit when a regulated voltage level of a second voltage regulation circuit reaches a first threshold voltage level. In this manner, the first voltage adjustment gain can be initially set to be lower than the second voltage adjustment gain until the second voltage regulation circuit is close or has railed. The first voltage adjustment gain can then be increased to allow the first voltage regulation circuit to also rail.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 10, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Lars Sandahl Ubbesen, Erik Pedersen, Søren Deleuran Laursen
  • Patent number: 8525586
    Abstract: A gain stage with DC offset compensation includes a gain amplifier and a compensation device. The gain amplifier is arranged to amplify an input signal according to a gain control signal. The compensation device is arranged to perform a DC offset compensation applied to the gain amplifier with an operating configuration based on the gain control signal.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 3, 2013
    Assignee: Mediatek Inc.
    Inventor: Mu-Jung Chen
  • Patent number: 8525592
    Abstract: A power amplifier amplifies a signal. An error signal calculating unit calculates an error signal in accordance with an input signal and an output from the power amplifier. A distortion compensation unit performs predistortion on the input signal by using distortion compensation coefficients that are generated in accordance with a plurality of delay signals obtained by giving different amounts of delay to the input signal and by using an error signal and outputs the input signal subjected to the predistortion to the signal amplifying unit. A tap interval control unit controls the delay intervals of the delay signals that are used for the predistortion performed by the distortion compensation unit in accordance with signal correlation information calculated from the input signal.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 3, 2013
    Assignee: Fujitsu Limited
    Inventors: Nobukazu Fudaba, Hiroyoshi Ishikawa, Yuichi Utsunomiya, Kazuo Nagatani
  • Patent number: 8519788
    Abstract: Embodiments disclosed in the detailed description relate to a pseudo-envelope follower power management system for managing the power delivered to a linear RF power amplifier. The pseudo-envelope follower power management system may include a switch mode power supply converter and a parallel amplifier cooperatively coupled to provide a linear RF power amplifier supply to the linear RF power amplifier. The pseudo-envelope follower power management system may include a charge pump configured to power the parallel amplifier. The charge pump may generate a plurality of output voltage levels. The charge pump may be either a boost charge pump or a boost/buck charge pump. The pseudo-envelope follower power management system may include an offset voltage control circuit configured to provide feedback to the switch mode power supply converter to regulate an offset voltage developed across a coupling device that couples the output of the parallel amplifier to the linear RF power amplifier supply.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 27, 2013
    Assignee: RF Micro Devices, Inc.
    Inventor: Nadim Khlat
  • Patent number: 8514025
    Abstract: An amplifier circuit, comprising: an input, for receiving an input signal to be amplified; a power amplifier, for amplifying the input signal; a switched power supply, having a switching frequency, for providing at least one supply voltage to the power amplifier; and a dither block, for dithering the switching frequency of the switched power supply. The dither block is controlled based on the input signal. Another aspect of the invention involves using first and second switches, each having different capacitances and resistances, and using the first or second switch depending on the input signal or volume signal. Another aspect of the invention involves controlling a bias signal provided to one or more components in the signal path based on the input signal or volume signal.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: August 20, 2013
    Assignee: Wolfson Microelectronics plc
    Inventor: John Paul Lesso
  • Patent number: 8508301
    Abstract: A three dimensional on-chip radio frequency amplifier is disclosed that includes first and second transformers and a first transistor. The first transformer includes first and second inductively coupled inductors. The second transformer includes third and fourth inductively coupled inductors. Each inductor includes multiple first segments in a first metal layer; multiple second segments in a second metal layer; first and second inputs, and multiple through vias coupling the first and second segments to form a continuous path between the first and second inputs. The first input of the first inductor is coupled to an amplifier input; the first input of the second inductor is coupled to the first transistor gate; the first input of the third inductor is coupled to the first transistor drain, the first input of the fourth inductor is coupled to an amplifier output. The second inductor inputs and the first transistor source are coupled to ground.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 13, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Shiqun Gu, Brian Matthew Henderson, Thomas R. Toms, Lew G. Chua-Eoan, Seyfollah S. Bazarjani, Matthew Nowak