Patents Examined by Scott R. Wilson
  • Patent number: 10289950
    Abstract: A neuromorphic electric system includes a network of plural neuron circuits connected in series and in parallel to form plural layers. Each of the plural neuron circuits includes: a soma circuit that stores a charge supplied thereto and outputs a spike signal; and plural synapse circuits that supply a charge to the soma circuit according to a spike signal fed to the synapse circuits, a number of the plural synapse circuits being one more than a number of plural neuron circuits in a prior layer outputting the spike signal to the synapse circuits. One of the plural synapse circuits supplies a charge to the soma circuit in response to receiving a series of pulse signals, and the others of the plural synapse circuits supply a charge to the soma circuit in response to receiving a spike signal from corresponding neuron circuits in the prior layer.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 14, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kohji Hosokawa, Masatoshi Ishii, Atsuya Okazaki, Junka Okazawa, Takayuki Osogami
  • Patent number: 10259701
    Abstract: A MEMS device and a method to manufacture a MEMS device are disclosed. An embodiment includes forming trenches in a first main surface of a substrate, forming conductive fingers by forming a conductive material in the trenches and forming an opening from a second main surface of the substrate thereby exposing the conductive fingers, the second main surface opposite the first main surface.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: April 16, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventor: Alfons Dehe
  • Patent number: 10249535
    Abstract: A method of forming a logic or memory cell with less than or equal to 0 nm of TS extending past the active fins and the resulting device are provided. Embodiments include forming gates across pairs of fins on a substrate; forming pairs of RSD between the gates on the fins; forming a planar SAC cap on each of the gates; forming a metal layer over the substrate coplanar with the SACs; forming a TS structure in the metal layer over the fins, the TS structure formed over the pairs of RSD, each upper portion having a width equal to or less than an overall width of a pair of fins; forming spacers on opposite sides of the upper portions; removing the metal layer between adjacent spacers; forming an ILD over the substrate; and forming a CA on each upper portion and a CB on a gate through the ILD.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 2, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Daniel Chanemougame, Lars Liebmann, Nigel Cave
  • Patent number: 10186635
    Abstract: A method of forming a vertical III-nitride based light emitting diode structure 5 and a vertical III-nitride based light emitting diode structure can be provided. The method comprises forming a III-nitride based light emitting structure on a silicon-oninsulator (SOI) substrate; forming a metal-based electrode structure on the III-nitride based light emitting structure; and removing the SOI substrate by a layer transfer process such that the metal-based electrode structure functions as a metal-based 10 substrate of the light emitting structure.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 22, 2019
    Assignee: AGENCY FOR SCIENCE TECHNOLOGY AND RESEARCH
    Inventors: Tripathy Sudhiranjan, Lin Vivian Kaixin, Teo Siew Lang, Dolmanan Surani Bin
  • Patent number: 10167566
    Abstract: A substrate (5) in which a surface of an aluminum base (10) other than a surface on which an insulating thin film layer (17) is formed is covered with a protective layer (19) which is an aluminum anodic oxide film.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: January 1, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiro Konishi, Shin Itoh
  • Patent number: 10153378
    Abstract: Provided is a structure of a transistor, which enables a so-called normally-off switching element, and a manufacturing method thereof. Provided is a structure of a semiconductor device which achieves high-speed response and high-speed operation by improving on characteristics of a transistor, and a manufacturing method thereof. Provided is a highly reliable semiconductor device. In the transistor in which a semiconductor layer, source and drain electrode layers, a gate insulating layer, and a gate electrode layer are stacked in that order. As the semiconductor layer, an oxide semiconductor layer which contains at least four kinds of elements of indium, gallium, zinc, and oxygen, and has a composition ratio (atomic percentage) of indium as twice or more as a composition ratio of gallium and a composition ratio of zinc, is used.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: December 11, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Takahashi, Tatsuya Honda, Takehisa Hatano
  • Patent number: 10109774
    Abstract: Pre-formed wavelength conversion elements are attached to light emitting elements and are shaped to reduce repeated occurrences of total internal reflection. The sides of the shaped elements may be sloped or otherwise shaped so as to introduce a change in the angle of incidence of reflected light upon the light extraction surface of the wavelength conversion element. The pre-formed wavelength conversion elements may be configured to extend over an array of light emitting elements, with features between the light emitting elements that are shaped to reduce repeated occurrences of total internal reflection.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: October 23, 2018
    Assignee: Lumileds LLC
    Inventors: Clarisse Mazuir, Qingwei Mo, Mei-Ling Kuo, Lin Li, Oleg Borisovich Shchekin
  • Patent number: 10096750
    Abstract: A display device include a substrate including a wiring electrode; an adhesive layer disposed on the substrate; a plurality of semiconductor light emitting devices adhered to the adhesive layer, and electrically connected to the wiring electrode; and a phosphor layer disposed to cover the plurality of semiconductor light emitting devices. Further, the phosphor layer includes a plurality of phosphor portions for converting a wavelength of light, and a plurality of partition wall portions formed between the plurality of phosphor portions, and the plurality of partition wall portions are sequentially disposed between the phosphor portions along a first direction and a second direction crossing each other, respectively, and at least one of the sequentially disposed partition wall portions overlaps with at least one of the plurality of semiconductor light emitting devices.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 9, 2018
    Assignee: LG ELECTRONICS INC.
    Inventors: Hwanjoon Choi, Yonghan Lee, Sungjin Park
  • Patent number: 10069045
    Abstract: A method of manufacturing a light emitting device including: forming a supporting body on a mounting surface of each of semiconductor light emitting elements; arranging the semiconductor light emitting elements to be spaced apart from each other by a predetermined distance; and forming a wavelength conversion layer to continuously cover an upper surface and side surfaces of at least one of the semiconductor light emitting elements. The forming the wavelength conversion layer includes spraying a slurry provided by mixing particles of a wavelength conversion member and a thermosetting resin in a solvent onto the upper surface and the side surfaces of the semiconductor light emitting element, so that a thickness of the wavelength conversion layer at a lower portion of the side surfaces of the supporting body is smaller than the thickness on the upper surface and the side surfaces of the semiconductor light emitting element.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 4, 2018
    Assignee: NICHIA CORPORATION
    Inventors: Takeshi Ikegami, Tadao Hayashi, Hiroto Tamaki
  • Patent number: 10062677
    Abstract: Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: August 28, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Casey Kurth, Kevin Tetz
  • Patent number: 10037979
    Abstract: A surface-mountable multi-chip component includes a carrier having a first connection element, a second connection element and third connection element that are electrically insulated from one another. A first semiconductor chip is arranged on the first connection element and electrically connected to the first and second connection elements. The first connection element forms a first electrode and the second connection element forms a second electrode for the first semiconductor chip. A second semiconductor chip is arranged on the second connection element and electrically connected to the second and third connection elements. The third connection element forms a first electrode and the second connection element forms a second electrode for the second semiconductor chip. The second connection element forms a common cathode or anode for the first and second semiconductor chips during operation.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 31, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Stefan Morgott
  • Patent number: 10020269
    Abstract: Disclosed are systems, devices and methods for providing electrostatic discharge (ESD) protection for integrated circuits. In some implementations, first and second conductors with ohmic contacts on an intrinsic semiconductor region can function similar to an x-i-y type diode, where each of x and y can be n-type or p-type. Such a diode can be configured to turn on under selected conditions such as an ESD event. Such a structure can be configured so as to provide an effective ESD protection while providing little or substantially nil effect on radio-frequency (RF) operating properties of a device.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 10, 2018
    Assignee: Skyworks Solutions. Inc.
    Inventors: Kim Rene Smith, Paul T. DiCarlo, Michael David Hill
  • Patent number: 10020444
    Abstract: According to one embodiment, a magnetic memory device includes an interlayer insulating film, a bottom electrode formed in the interlayer insulating film, a buffer layer formed on the bottom electrode, and a stacked structure formed on the buffer layer and including a first magnetic layer functioning as a magnetic storage layer, wherein a portion of the buffer layer located on a central portion of the bottom electrode is thicker than a portion of the buffer layer located on a peripheral portion of the bottom electrode.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: July 10, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Shuichi Tsubata, Masatoshi Yoshikawa, Satoshi Seto
  • Patent number: 9947782
    Abstract: A semiconductor device has a semiconductor layer and a substrate. The semiconductor layer constitutes at least a part of a current path, and is made of silicon carbide. The substrate has a first surface supporting the semiconductor layer, and a second surface opposite to the first surface. Further, the substrate is made of silicon carbide having a 4H type single-crystal structure. Further, the substrate has a physical property in which a ratio of a peak strength in a wavelength of around 500 nm to a peak strength in a wavelength of around 390 nm is 0.1 or smaller in photoluminescence measurement. In this way, the semiconductor device is obtained to have a low on-resistance.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 17, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Harada, Makoto Sasaki, Taro Nishiguchi, Kyoko Okita, Keiji Wada, Tomihito Miyazaki
  • Patent number: 9947643
    Abstract: Inverted optical device. In accordance with an embodiment of the present invention, a plurality of piggyback substrates are attached to a carrier wafer. The plurality of piggyback substrates are dissimilar in composition to the carrier wafer. The plurality of piggyback substrates are processed, while attached to the carrier wafer, to produce a plurality of integrated circuit devices. A flip wafer is attached to the plurality of light emitting diodes, away from the carrier wafer and the carrier wafer is removed. The plurality of light emitting diodes may be singulated to form individual light emitting diode devices.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 17, 2018
    Assignee: INVENSAS CORPORATION
    Inventors: Ilyas Mohammed, Masud Beroz, Liang Wang
  • Patent number: 9929220
    Abstract: Thinned and highly reliable light emitting elements are provided. Further, light emitting devices in which light emitting elements are formed over flexible substrates are manufactured with high yield. One light emitting device includes a flexible substrate, a light emitting element formed over the flexible substrate, and a resin film covering the light emitting element, and in the light emitting element, an insulating layer serving as a partition has a convex portion and the convex portion is embedded in the resin film, that is, the resin film covers an entire surface of the insulating layer and an entire surface of the second electrode, whereby the light emitting element can be thinned and highly reliable. In addition, a light emitting device can be manufactured with high yield in a manufacturing process thereof.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: March 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Katayama, Shingo Eguchi, Yoshiaki Oikawa, Ami Nakamura, Satoshi Seo, Kaoru Hatano
  • Patent number: 9923101
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a floating substrate; and a capacitor grounded and connected to the floating substrate. A method of manufacturing a semiconductor structure is also provided.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 9887317
    Abstract: A light-emitting device including a substrate; a first conductivity semiconductor layer disposed on the substrate; a first barrier disposed on the first conductivity semiconductor layer; a well disposed on the first barrier and including a first region having a first energy gap and a second region having a second energy gap and closer to the semiconductor layer than the first region; a second barrier disposed on the well; and a second conductivity semiconductor layer disposed on the second barrier; wherein the first energy gap decreases along a stacking direction of the light-emitting device and has a first gradient, the second energy gap increases along the stacking direction and has a second gradient, and an absolute value of the first gradient is smaller than an absolute value of the second gradient.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: February 6, 2018
    Assignee: EPISTAR CORPORATION
    Inventors: Tien-Chang Lu, Chiao-Yun Chang, Heng Li
  • Patent number: 9876012
    Abstract: A voltage converter includes an output circuit having a high-side device and a low-side device which can be formed on a single die (a “PowerDie”). The high-side device can include a lateral diffused metal oxide semiconductor (LDMOS) while the low-side device can include a trench-gate vertical diffused metal oxide semiconductor (VDMOS). The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with the output circuit.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 23, 2018
    Assignee: INTERSIL AMERICAS LLC
    Inventor: Francois Hebert
  • Patent number: 9842906
    Abstract: A MOSFET cell of a semiconductor device includes a polysilicon gate electrode and an n+-source region formed in an upper portion of an n?-drift layer. An interlayer insulating film covers the gate electrode. An Al source electrode extends on the interlayer insulating film. An Al gate pad is connected to the gate electrode. A barrier metal layer that prevents diffusion of aluminum is interposed between the source electrode and the interlayer insulating film, and between the gate pad and the gate electrode.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: December 12, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Eisuke Suekawa, Yasunori Oritsuki, Yoichiro Tarui