Patents Examined by Sonya McCall-Shepard
  • Patent number: 11417618
    Abstract: A semiconductor device includes: a lower structure; a redistribution insulating layer disposed over the lower structure; a redistribution conductive layer disposed over the redistribution insulating layer and electrically connected to a part of the lower structure, the redistribution conductive layer including a redistribution pad; and a protective layer covering the redistribution insulating layer and the redistribution conductive layer while leaving the redistribution pad exposed. The redistribution conductive layer includes a trench disposed adjacent to the redistribution pad, and a part of the protective layer fills the trench.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: August 16, 2022
    Assignee: SK hynix Inc.
    Inventors: Seung Hwan Kim, Hyun Chul Seo, Hyeong Seok Choi, Shin Young Park
  • Patent number: 11410939
    Abstract: Structures and formation methods of a chip package are provided. The chip package includes a substrate and a semiconductor die over the substrate. The chip package also includes a lid covering a top surface of the semiconductor die. The lid has a first support structure and a second support structure, and the first support structure and the second support structure are positioned at respective corner portions of the substrate. An opening penetrates through the lid to expose a space containing the semiconductor die, and the lid has a side edge extending from an edge of the first support structure to an edge of the second support structure.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Shen Yeh, Chin-Hua Wang, Kuang-Chun Lee, Po-Yao Lin, Shyue-Ter Leu, Shin-Puu Jeng
  • Patent number: 11411070
    Abstract: An integrated circuit (IC) includes a first capacitor, a second capacitor, and functional circuitry configured together with the capacitors for realizing at least one circuit function in a semiconductor surface layer on a substrate. The capacitors include a top plate over a LOCal Oxidation of Silicon (LOCOS) oxide, wherein a thickness of the LOCOS oxide for the second capacitor is thicker than a thickness of the LOCOS oxide for the first capacitor. There is a contact for the top plate and a contact for a bottom plate for the first and second capacitors.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: August 9, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Henry Litzmann Edwards
  • Patent number: 11410994
    Abstract: A semiconductor device includes first and second external dummy areas, and a circuit area between the first and second external dummy areas. The circuit area includes circuit active regions and circuit gate lines. Each external dummy area includes an external dummy active region and external dummy gate lines overlapping the external dummy active region and spaced apart from the circuit gate lines. The external dummy active region has a linear shape extending in a first horizontal direction or a shape including active portions isolated from direct contact with each other and extending sequentially in the first horizontal direction. The circuit active regions are between the first and second external dummy active regions and include a first plurality of circuit active regions extending sequentially in the first horizontal direction and a second plurality of circuit active regions extending sequentially in a second horizontal direction perpendicular to the first horizontal direction.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: August 9, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seonah Nam, Byungju Kang, Byungsung Kim, Hyelim Kim, Sungho Park, Yubo Qian
  • Patent number: 11404305
    Abstract: A manufacturing method a semiconductor device includes the following steps. A first mask pattern and a second mask pattern are formed on a first region and a second region of a substrate respectively. The second region is located adjacent to the first region. A top surface of the first mask pattern is lower than a top surface of the second mask pattern in a thickness direction of the substrate. A trench is formed in the substrate. The trench is partly located in the first region and partly located in the second region. A first etching process is performed for reducing a thickness of the second mask pattern and reducing a height difference between the top surface of the first mask pattern and the top surface of the second mask pattern in the thickness direction of the substrate. An isolation structure is formed in the trench after the first etching process.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 2, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ta-Wei Chiu, Shin-Hung Li, Tsung-Yu Yang, Ruei-Jhe Tsao
  • Patent number: 11404539
    Abstract: A device (100) includes a substrate (101-106) with an upper semiconductor layer, buried semiconductor layer, and a DTI structure (107-108) defining an active device region; a dummy LDMOS device (121) in the active device region which includes a grounded drain (D1) in a drift region (105), a source (S1, S2) in a body region (109) which extends to contact the buried semiconductor layer, a gate electrode (G1-G4) formed so that the source and at least part of the gate electrode are connected with the body implant region, and a buffering semiconductor layer portion (104) adjacent the DTI structure; and one or more active LDMOS devices (122) positioned in the active device region to be separated from the DTI structure by the dummy LDMOS device (121) which reduces an electric field across the sidewall insulator layer (107) in the DTI structure.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 2, 2022
    Assignee: NXP USA, INC.
    Inventors: Xin Lin, Ronghua Zhu, Xu Cheng, Yujing Wu, Zhihong Zhang
  • Patent number: 11398474
    Abstract: Neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, and methods of fabricating neighboring gate-all-around integrated circuit structures having disjoined epitaxial source or drain regions, are described. For example, a structure includes first and second vertical arrangements of nanowires, the nanowires of the second vertical arrangement of nanowires having a horizontal width greater than a horizontal width of the nanowires of the first vertical arrangement of nanowires. First and second gate stacks are over the first and second vertical arrangements of nanowires, respectively. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires, and second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening dielectric structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: July 26, 2022
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Tahir Ghani, Swaminathan Sivakumar
  • Patent number: 11393814
    Abstract: A method for forming a semiconductor device includes: forming a semiconductor fin extending upwardly from a substrate; breaking the semiconductor fin into two separate fin structures; conformally forming a first dielectric layer over the fin structures; after conformally forming the first dielectric layer, filling a recess between the fin structures with a first flowable oxide; etching back the first flowable oxide to lower a top surface of the first flowable oxide to a level below top surfaces of the fin structures; conformally forming a second dielectric layer over the first dielectric layer and the etched back first flowable oxide, such that a laterally portion of the second dielectric layer in the recess is lower than the top surfaces of the fin structures; planarizing the first and second dielectric layers to expose the fin structures, while leaving the laterally portion of the second dielectric layer covering the first flowable oxide.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Shi-Ning Ju, Chih-Hao Wang
  • Patent number: 11387365
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure extending in a first direction is formed over a substrate. An isolation insulating layer is formed over the substrate so that an upper portion of the fin structure is exposed from the isolation insulating layer. A gate structure extending in a second direction crossing the first direction is formed over a part of the fin structure. A fin mask layer is formed on sidewalls of a source/drain region of the fin structure. The source/drain region of the fin structure is recessed. An epitaxial source/drain structure is formed over the recessed fin structure. In the recessing the source/drain region of the fin structure, a plasma process combining etching and deposition processes is used to form a recess having a rounded corner shape in a cross section along the second direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yen Yu, Po-Chi Wu, Yueh-Chun Lai
  • Patent number: 11387333
    Abstract: An integrated circuit (IC) includes a first field-plated field effect transistor (FET), and a second field-plated FET, and functional circuitry configured together with the field-plated FETs for realizing at least one circuit function in a semiconductor surface layer on a substrate. The field-plated FETs include a gate structure including a gate electrode partially over a LOCOS field relief oxide and partially over a gate dielectric layer. The LOCOS field relief oxide thickness for the first field-plated FET is thicker than the LOCOS field relief oxide thickness for the second field-plated FET. There are sources and drains on respective sides of the gate structures in the semiconductor surface layer.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 12, 2022
    Assignee: Texas Instruments Incorporated
    Inventor: Henry Litzmann Edwards
  • Patent number: 11380760
    Abstract: A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: July 5, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungin Choi, Hyunchul Song, Sunjung Kim, Taegon Kim, Seong Hoon Jeong
  • Patent number: 11380541
    Abstract: A semiconductor device is provided. The semiconductor device includes: an active region on a semiconductor substrate; a channel region on the active region; a source/drain region adjacent to the channel region on the active region; a gate structure overlapping the channel region, on the channel region; a contact structure on the source/drain region; a gate spacer between the contact structure and the gate structure; and a contact spacer surrounding a side surface of the contact structure. The source/drain region includes a first epitaxial region having a recessed surface and a second epitaxial region on the recessed surface of the first epitaxial region, and the second epitaxial region includes an extended portion, extended from a portion overlapping the contact structure in a vertical direction, in a horizontal direction and overlapping the contact spacer in the vertical direction.
    Type: Grant
    Filed: August 29, 2020
    Date of Patent: July 5, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Gyeom Kim, Dongwoo Kim, Jihye Yi, JinBum Kim, Sangmoon Lee, Seunghun Lee
  • Patent number: 11373900
    Abstract: Damascene plug and tab patterning with photobuckets for back end of line (BEOL) spacer-based interconnects is described. In an example, a back end of line (BEOL) metallization layer for a semiconductor structure includes an inter-layer dielectric (ILD) layer disposed above a substrate. A plurality of conductive lines is disposed in the ILD layer along a first direction. A conductive tab is disposed in the ILD layer. The conductive tab couples two of the plurality of conductive lines along a second direction orthogonal to the first direction.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Kevin Lin, Robert L. Bristol, Richard E. Schenker
  • Patent number: 11374128
    Abstract: A method includes providing a structure having a substrate and a fin. The fin has first and second layers of first and second different semiconductor materials. The first layers and the second layers are alternately stacked over the substrate. The structure further has a sacrificial gate stack engaging a channel region of the fin and gate spacers on sidewalls of the sacrificial gate stack. The method further includes etching a source/drain (S/D) region of the fin, resulting in an S/D trench; partially recessing the second layers exposed in the S/D trench, resulting in a gap between two adjacent layers of the first layers; and depositing a dielectric layer over surfaces of the gate spacers, the first layers, and the second layers. The dielectric layer partially fills the gap, leaving a void sandwiched between the dielectric layer on the two adjacent layers of the first layers.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chiang Chen, Wei-Yang Lee, Chia-Pin Lin, Yuan-Ching Peng
  • Patent number: 11373957
    Abstract: A semiconductor package includes a first substrate, a first layer structure, a second layer structure, a first antenna layer and an electronic component. The first antenna layer is formed on at least one of the first layer structure and the second layer structure, wherein the first antenna layer has an upper surface flush with a layer upper surface of the first layer structure or the second layer structure. The electronic component is disposed on a substrate lower surface of the first substrate and exposed from the first substrate. The first layer structure is formed between the first substrate and the second layer structure.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: June 28, 2022
    Assignee: MediaTek Inc.
    Inventors: Wen-Sung Hsu, Tao Cheng, Nan-Cheng Chen, Che-Ya Chou, Wen-Chou Wu, Yen-Ju Lu, Chih-Ming Hung, Wei-Hsiu Hsu
  • Patent number: 11367721
    Abstract: A semiconductor structure includes a semiconductor substrate including a first region and a second region; a first device disposed in the first region and a second device disposed in the second region, wherein a voltage level of the first device is greater than a voltage level of the second device; a first isolation disposed in the first region, wherein the first isolation includes a first depth; and a second isolation disposed in the second region, wherein the second isolation includes a second depth, and the first depth is greater than the second depth.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: June 21, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jing-Jung Huang, Ching En Chen, Jung-Hui Kao, Kong-Beng Thei
  • Patent number: 11355399
    Abstract: A method may include forming a mask layer on top of a first dielectric layer formed on a first source/drain and a second source/drain, and creating an opening in the mask layer and the first dielectric layer that exposes portions of the first source/drain and the second source/drain. The method may include filling the opening with a metal layer that covers the exposed portions of the first source/drain and the second source/drain, and forming a gap in the metal layer to create a first metal contact and a second metal contact. The first metal contact may electrically couple to the first source/drain and the second metal contact may electrically couple to the second source/drain. The gap may separate the first metal contact from the second metal contact by less than nineteen nanometers.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 7, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Ching-Feng Fu, Huan-Just Lin, Fu-Sheng Li, Tsai-Jung Ho, Bor Chiuan Hsieh, Guan-Xuan Chen, Guan-Ren Wang
  • Patent number: 11355341
    Abstract: A first semiconductor substrate contains a first semiconductor material, such as silicon. A second semiconductor substrate containing a second semiconductor material, such as gallium nitride or aluminum gallium nitride, is formed on the first semiconductor substrate. The first semiconductor substrate and second semiconductor substrate are singulated to provide a semiconductor die including a portion of the second semiconductor material supported by a portion of the first semiconductor material. The semiconductor die is disposed over a die attach area of an interconnect structure. The interconnect structure has a conductive layer and optional active region. An underfill material is deposited between the semiconductor die and die attach area of the interconnect structure. The first semiconductor material is removed from the semiconductor die and the interconnect structure is singulated to separate the semiconductor die. The first semiconductor material can be removed post interconnect structure singulation.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 7, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. Grivna, Stephen St. Germain
  • Patent number: 11355602
    Abstract: According to one embodiment, a semiconductor device includes first, second and third conductive parts, a first semiconductor region, and a first insulating part. A direction from the first conductive part toward the second conductive part is along a first direction. The first semiconductor region includes first, second, and third partial regions. A second direction from the first partial region toward the second partial region crosses the first direction. The third partial region is between the first partial region and the second conductive part in the first direction. The third partial region includes an opposing surface facing the second conductive part. A direction from the opposing surface toward the third conductive part is along the second direction. The first insulating part includes a first insulating region. At least a portion of the first insulating region is between the opposing surface and the third conductive part.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: June 7, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Tomoaki Inokuchi, Hiro Gangi, Yusuke Kobayashi, Masahiko Kuraguchi, Kazuto Takao, Ryosuke Iijima, Tatsuo Shimizu, Tatsuya Nishiwaki
  • Patent number: 11342408
    Abstract: The present disclosure is directed to a method of fabrication a semiconductor structure. The method includes providing a substrate and forming a bottom electrode over the substrate, wherein a terminal end of the bottom electrode has a tapered sidewall. The method also includes depositing an insulating layer over the bottom electrode and forming a top electrode over the insulating layer, wherein a terminal end of the top electrode has a vertical sidewall.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen