Patents Examined by Spencer Patton
  • Patent number: 8718821
    Abstract: A navigational control system for altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising a mechanical sweeping transmitter laser integrated in combination with a high point of a housing infrastructure of the robotic device so that none of the structural features of the robotic device interfere with sweeping of the transmitting element of the mechanical sweeping transmitter laser.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 6, 2014
    Assignee: iRobot Corporation
    Inventors: Mark J. Chiappetta, Joseph L. Jones
  • Patent number: 8712588
    Abstract: A method and apparatus of improving the navigation performance of robot are provided. The navigation method using a virtual sensor includes: generating information on positions of obstacles, the information which is estimated to be generated by virtual sensors that are virtually present, based on information on positions of the obstacles, which is generated by physical sensors; and controlling a movement of a robot according to the information on the positions of the obstacles. It is possible to overcome limits in the number and arrangement of previously installed physical sensors.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeon Myeong, Youngjin Hong
  • Patent number: 8700235
    Abstract: A method for estimating a loading criterion relating to the load experienced by a structural component of an aircraft, and assistance with detecting a so-called “hard” landing. The method includes measuring parameters of the aircraft and calculating at least one loading criterion for the loading of the structural component using at least one neural network receiving the parameters as input. Assistance with detecting a hard landing then includes determining of a time of impact of the aircraft on a landing strip from the measured parameters, then estimating a plurality of the parameters at the determined time of impact so as to calculate the at least one loading criterion relating to the loading of the structural component.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: April 15, 2014
    Assignee: Airbus Operations S.A.S.
    Inventors: Nicolas Lastere, Melissa Duchesne, Emmanuel Ray
  • Patent number: 8670881
    Abstract: A flight management system is provided for generating a variable thrust cutback during aircraft departure. The flight management system includes memory storing a sound exposure level limit for a navigation flight and storing expected sound exposure levels for an aircraft, and one or more inputs for receiving sensed aircraft variables including altitude and airspeed. The system also includes a processor for processing the sensed altitude and airspeed and stored sound exposure levels. The processor further computes an engine thrust value that complies with the sound exposure level limit based on the altitude, airspeed and the sound exposure levels for controlling aircraft throttle during departure.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: March 11, 2014
    Assignee: General Electric Company
    Inventor: Michael K. DeJonge
  • Patent number: 8670868
    Abstract: The present invention relates to a system and a method for providing safe remote access to a plurality of robot controllers positioned at a local site for a person positioned on a remote site. The system includes a plurality of robot controllers, each capable of receiving credentials and including an authentication component for authentication of the credentials, and an authorization component for handling authorization for access to the robot controller based on the result of the authentication, a remote computer located at a remote site and capable of communicating with the robot controllers and having an interface capable of receiving credentials and configured to send the credentials to the robot controllers, a server component capable of communicating with the robot controllers, and an identifying component positioned at the local site configured to receive proof of local access.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 11, 2014
    Assignee: ABB Technology AG
    Inventors: Bertil Emmertz, Jean-Christophe Alt, Steve Murphy
  • Patent number: 8666545
    Abstract: Disclosed herein is a user interface apparatus and control method for the control of service robots. The user interface apparatus for the control of service robots includes an interaction server, an index block, and a robot control server. The interaction server receives control commands to control a service robot from a user, analyzes the control commands, and outputs the results of the analysis to the user. The index block determines the degree of difficulty of each of the analyzed control commands. The robot control server determines the operating mode of the service robot depending on the analyzed control command and the degree of difficulty, and controls the service robot in the determined operating mode.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: March 4, 2014
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jae Wook Jeon, Tae Houn Song, Soon Mook Jung, Hyun Uk Jung, Myung Jin Kim
  • Patent number: 8644991
    Abstract: Configurations are provided for vehicular robots or other vehicles to provide shifting of their centers of gravity for enhanced obstacle navigation. A robot chassis with pivotable driven flippers has a pivotable neck and sensor head mounted toward the front of the chassis. The neck is pivoted forward to shift the vehicle combined center of gravity (combined CG) forward for various climbing and navigation tasks. The flippers may also be selectively moved to reposition the center of gravity. Various weight distributions allow different CG shifting capabilities.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: February 4, 2014
    Assignee: iRobot Corporation
    Inventors: Timothy R. Ohm, Michael Bassett
  • Patent number: 8606433
    Abstract: A system and method for determining when a moving mobile platform will enter or exit a satellite coverage region. In a preferred form the method involves determining a plurality of boundary coordinates that define a satellite coverage region perimeter. A position of the mobile platform is monitored as the mobile platform moves along a travel path. The proximity of the mobile platform to the satellite coverage region perimeter is determined by periodically comparing the position of the mobile platform to the boundary coordinates.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: December 10, 2013
    Assignee: The Boeing Company
    Inventor: Scott P. Taylor
  • Patent number: 8588976
    Abstract: A remote control station that controls a robot through a network. The remote control station transmits a robot control command that includes information to move the robot. The remote control station monitors at least one network parameter and scales the robot control command as a function of the network parameter. For example, the remote control station can monitor network latency and scale the robot control command to slow down the robot with an increase in the latency of the network. Such an approach can reduce the amount of overshoot or overcorrection by a user driving the robot.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: November 19, 2013
    Assignee: Intouch Technologies, Inc.
    Inventors: Amante Mangaser, Jonathan Southard, Marco Pinter, John Cody Herzog, Charles Steve Jordan, Yulun Wang, James Rosenthal
  • Patent number: 8554418
    Abstract: An electric power steering apparatus includes a temperature sensor measuring a temperature at a starting of a vehicle, a motor position sensor detecting a relative steering angle of a motor, a cumulative transfer calculation unit calculating a cumulative transfer quantity of a rack bar by information detected in the motor position sensor, a counter calculating an elapsed time from a starting time of the vehicle, a friction coefficient determination unit determining a friction coefficient according to information inputted from the temperature sensor, the cumulative transfer quantity calculation unit, and the counter, respectively, by using a setting map of a friction coefficient, and a target current calculation unit calculating a compensation quantity for a friction by using the friction coefficient determined in the friction coefficient determination unit and determining a target current.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 8, 2013
    Assignee: Mando Corporation
    Inventor: Seong Joo Kim
  • Patent number: 8548706
    Abstract: A device operable to control a turning of a vehicle, includes: a motion controller operable to: control a first adjuster so as to increase a drive force applied to at least one of front wheels and rear wheels situated in an inner side of the turning, and control a second adjuster so as to increase the braking force applied to at least one of the front wheels and the rear wheels situated in an outer side of the turning; and control the first adjuster so as to increase the drive force applied to at least one of the front wheels and the rear wheels situated in an outer side of the turning, and control the second adjuster so as to increase the braking force applied to at least one of the front wheels and the rear wheels situated in an inner side of the turning.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 1, 2013
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Takami Miura, Kaoru Sawase, Takao Matsui, Yuichi Ushiroda, Naoki Takahashi, Keiji Suzuki
  • Patent number: 8538622
    Abstract: A redundant position sensing system includes a device having a position between minimum and maximum positions. First and second sensor modules include first and second sensor resistances. A value of one of the first or second sensor resistances increases and a value of the other of the first or second resistances decreases when the device moves from the minimum position to the maximum position. A maximum value of the first sensor resistance ranges between a first maximum value and a second maximum value that is greater than the first maximum value due to a first manufacturing tolerance. A maximum value of the second sensor resistance ranges between a third maximum value and a fourth maximum value that is greater than the third maximum value due to a second manufacturing tolerance. The second maximum value is less than the third maximum value.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: September 17, 2013
    Inventors: Kerfegar K. Katrak, John N. Stockbridge
  • Patent number: 8532923
    Abstract: A pedestrian route navigation system (“PRNS”) in a vehicle capable of determining a route from a final parking position of the vehicle to a predetermined destination, comprising a final parking position unit and a pedestrian route calculation unit. The PRNS may include a display unit capable of outputting data concerning the route to the predetermined destination, and a transmitting/receiving unit capable of transmitting the data to a mobile information unit of the user of the vehicle.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 10, 2013
    Assignee: Harman Becker Automotive Systems GmbH
    Inventor: Christian Bruelle-Drews
  • Patent number: 8532820
    Abstract: Methods and systems enabling a cloud service to manage robotic devices are provided. An example method includes receiving a task order including information that identifies configuration requirements for a robotic device to perform a task, program instructions executable by the robotic device to perform the task, and payment information for the task. The method may also include selecting one or more robotic devices to perform the task from among a pool of robotic devices. For instance, the selected one or more robotic devices may be leased for a period of time to perform the task. The method may further include providing the configuration requirements and the program instructions to the selected one or more robotic devices, and receiving confirmation that the task has been performed. According to the method, payment may be provided to one or more accounts registered with the selected one or more robotic devices.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 10, 2013
    Assignee: Google Inc.
    Inventor: Satish Kumar Sampath
  • Patent number: 8515668
    Abstract: A pedestrian route navigation system (“PRNS”) in a vehicle capable of determining a route from a final parking position of the vehicle to a predetermined destination, comprising a final parking position unit and a pedestrian route calculation unit. The PRNS may include a display unit capable of outputting data concerning the route to the predetermined destination, and a transmitting/receiving unit capable of transmitting the data to a mobile information unit of the user of the vehicle.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 20, 2013
    Assignee: Harman Becker Automotive Systems GmbH
    Inventor: Christian Bruelle-Drews
  • Patent number: 8515578
    Abstract: A navigational control system for altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising means for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area in a known spaced-apart relationship, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system; and wherein the receiving subsystem is configured and operative to process the one or more detected directed beams under the control of the navigational control algorithm to determine whether the predetermined triggering event has occurred, an
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 20, 2013
    Assignee: iRobot Corporation
    Inventors: Mark J. Chiappetta, Joseph L. Jones
  • Patent number: 8489302
    Abstract: Systems and methods for dynamically stable braking are disclosed. A first electromechanical brake actuator controller may be placed in communication with a second electromechanical brake actuator controller, wherein each of the first electromechanical brake actuator controller and second electromechanical brake actuator controller are in communication with electromechanical brake actuators that are associated with the same wheel. The first electromechanical brake actuator controller and second electromechanical brake actuator controllers may then communicate electromechanical brake actuator status information and take corrective measures in accordance with the status information.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 16, 2013
    Assignee: Goodrich Corporation
    Inventor: Eric D. Cahill
  • Patent number: 8478464
    Abstract: Systems and methods for orienting a marine vessel enhance available thrust in a station keeping mode. A control device having a memory and a programmable circuit is programmed to control operation of a plurality of marine propulsion devices to maintain orientation of a marine vessel in a selected global position. The control device is programmed to calculate a direction of a resultant thrust vector associated with the plurality of marine propulsion devices that is necessary to maintain the vessel in the selected global position. The control device is programmed to control operation of the plurality of marine propulsion devices to change the actual heading of the marine vessel to align the actual heading with the thrust vector.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 2, 2013
    Assignee: Brunswick Corporation
    Inventors: Jason S. Arbuckle, William R. Robertson, Kenneth G. Gable
  • Patent number: 8473102
    Abstract: A robot controller in accordance with the present invention is a robot controller that makes a robot including a plurality of legs walk by driving joints of the robot, the robot controller being configured to determine a permissible range for a trunk vertical position of the robot based on measured environmental parameters, the measured environmental parameters being information of an environment around the robot, and to make the robot walk based on measured posture parameters representing a posture of the robot so that the trunk vertical position remains within the permissible range. In this way, a legged robot with high robustness as well as its controller and control method can be provided.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Fukashi Andoh
  • Patent number: 8473140
    Abstract: An autonomous vehicle and systems having an interface for payloads that allows integration of various payloads with relative ease. There is a vehicle control system for controlling an autonomous vehicle, receiving data, and transmitting a control signal on at least one network. A payload is adapted to detachably connect to the autonomous vehicle, the payload comprising a network interface configured to receive the control signal from the vehicle control system over the at least one network. The vehicle control system may encapsulate payload data and transmit the payload data over the at least one network, including Ethernet or CAN networks. The payload may be a laser scanner, a radio, a chemical detection system, or a Global Positioning System unit.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: June 25, 2013
    Assignees: Deere & Company, iRobot Corporation
    Inventors: William Robert Norris, James Allard, Jeffery Scott Puhalla, Kathleen A. Wienhold