Patents Examined by Thai T Vuong
  • Patent number: 9620369
    Abstract: A method for fabricating a semiconductor device, wherein the method comprises steps as follows: A dummy gate with a poly-silicon gate electrode and a passive device having a poly-silicon element layer are firstly provided. A hard mask layer is then formed on the dummy gate and the passive device. Next, a first etching process is performed to remove a portion of the hard mask layer to expose a portion of the poly-silicon element layer. Subsequently, an inner layer dielectric (ILD) is formed on the dummy gate and the poly-silicon element layer, and the ILD is flattened by using the hard mask layer as a polishing stop layer. Thereafter, a second etching process is performed to remove the poly-silicon gate electrode, and a metal gate electrode is formed on the location where the poly-silicon gate electrode was initially disposed.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: April 11, 2017
    Inventors: Chieh-Te Chen, Shih-Fang Tzou, Jiunn-Hsiung Liao, Yi-Po Lin
  • Patent number: 9613987
    Abstract: A display device including a data line disposed on a substrate; a first pigment layer formed to cover the data line; a second pigment layer disposed by a side of the first pigment layer and formed to have a first region which corresponds to an overlap region of the first and second pigment layers; and common electrodes arranged on second regions in which the first and second pigment layers do not overlap with each other.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 4, 2017
    Assignee: LG Display Co., Ltd.
    Inventors: Young Jik Jo, Young Sik Jeong, So Young Lee
  • Patent number: 9608232
    Abstract: The organic electroluminescence display device has a circuit board, an element layer which contains an organic electrode luminescence film and a positive electrode and a negative electrode sandwiching the organic electroluminescence film and which is formed on the circuit board, and a sealing film sealing the element layer. The sealing film contains an inorganic layer covering the element layer and an organic layer formed between a part of the element layer and a part of the inorganic layer. The upper surface of the element layer has an inorganic contact area contacting the inorganic layer and an organic contact area contacting the organic layer. The organic contact area is a hollow in the upper surface of the element layer. The area of the upper surface of the organic layer is smaller than the area of the lower surface contacting the inner surface of the hollow.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 28, 2017
    Assignee: Japan Display Inc.
    Inventor: Akinori Kamiya
  • Patent number: 9601628
    Abstract: Semiconductor devices are provided including a first fin-shaped pattern having first and second sidewalls facing one another and a field insulating film contacting at least a portion of the first fin-shaped pattern. The first fin-shaped pattern includes a lower portion of the first fin-shaped pattern contacting the field insulating film; an upper portion of the first fin-shaped pattern not contacting the field insulating film; a first boundary between the lower portion of the first fin-shaped pattern and the upper portion of the first fin-shaped pattern; and a first fin center line perpendicular to the first boundary and meeting the top of the upper portion of the first fin-shaped pattern. The first sidewall of the upper portion of the first fin-shaped pattern and the second sidewall of the upper portion of the first fin-shaped pattern are asymmetric with respect to the first fin center line.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 21, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Gun You, Se-Wan Park, Baik-Min Sung, Bo-Cheol Jeong
  • Patent number: 9589939
    Abstract: An optoelectronic semiconductor chip includes an interconnection layer with a first electrically conductive contact layer, a second electrically conductive contact layer and an insulation layer, which is formed of an electrically insulating material. Further, the optoelectronic semiconductor chip includes two optoelectronic semiconductor bodies, each of which include an active region that is intended to generate radiation. The insulation layer is arranged on a top of the second electrically conductive contact layer facing the optoelectronic semiconductor bodies. The first electrically conductive contact layer is arranged on a top of the insulation layer remote from the second electrically conductive contact layer. The optoelectronic semiconductor bodies are interconnected electrically in parallel by the interconnection layer.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: March 7, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Norwin von Malm
  • Patent number: 9583436
    Abstract: A package apparatus comprises a first conductive wiring layer, a first conductive pillar layer, a first conductive glue layer, an internal component, a second conductive pillar layer, a first molding compound layer and a second conductive wiring layer. The first conductive pillar layer is disposed on the first conductive wiring layer. The first conductive glue layer is disposed on the first conductive wiring layer. The internal component has a first electrode layer and a second electrode layer, wherein the first electrode layer is disposed and electrical connected to the first conductive glue layer. The second conductive pillar layer is disposed on the second electrode layer. Wherein the first conductive wiring layer, the first conductive pillar layer, the first conductive glue layer, the internal component and the second conductive pillar layer are disposed inside the first molding compound layer.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: February 28, 2017
    Assignee: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Chao-Tsung Tseng, Shih-Ping Hsu, Chin-Ming Liu, Che-Wei Hsu
  • Patent number: 9583737
    Abstract: An organic electro-luminescence display device includes a first substrate, plural pedestals which are provided in a convex shape on the first substrate and have inclined side surfaces, plural first electrodes respectively provided on the respective side surfaces of the pedestals, an organic electro-luminescence film which is provided above the plural pedestals and includes a light-emitting layer laminated on the plural fist electrodes, and a second electrode which is provided above the plural pedestals and is laminated on the organic electro-luminescence film. Light generated in the light-emitting layer is transmitted between a first reflection surface and a second reflection surface. The second electrode includes light transmission parts, through which the light passes, above upper end parts of the pedestals. A surface of the second electrode facing the organic electro-luminescence film is the second reflection surface except for the light transmission parts.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: February 28, 2017
    Assignee: Japan Display Inc.
    Inventor: Toshihiro Sato
  • Patent number: 9583588
    Abstract: A method includes epitaxially growing a gallium nitride (GaN) layer over a silicon substrate. The method further includes epitaxially growing a donor-supply layer over the GaN layer. The method further includes forming a source and a drain on the donor-supply layer. The method further includes forming a gate structure between the source and the drain on the donor-supply layer. The method further includes plasma etching a portion of a drift region of the donor-supply layer to a depth of less than 60% of a donor-supply layer thickness. The method further includes depositing a dielectric layer over the donor-supply layer.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Ju Yu, Chih-Wen Hsiung, Fu-Wei Yao, Chun-Wei Hsu, King-Yuen Wong, Jiun-Lei Jerry Yu, Fu-Chih Yang
  • Patent number: 9576821
    Abstract: A package includes a die, an encapsulant, and a capacitor. The package has a package first side and a package second side. The die has a die first side corresponding to the package first side, and has a die second side corresponding to the package second side. The die first side is opposite the die second side. The encapsulant surrounds the die. The capacitor includes a first plate and a second plate in the encapsulant, and opposing surfaces of the first plate and the second plate extend in a direction from the package first side to the package second side. The external conductive connectors are attached to at least one of the package first side and the package second side.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sut-I Lo, Ching-Wen Hsiao, Hsu-Hsien Chen, Chen-Shien Chen
  • Patent number: 9576987
    Abstract: A display substrate includes a substrate having a first region and a second region, a conductive pattern is provided in the first region of the substrate and includes a first conductive pattern and a second conductive pattern, the first conductive pattern has a gate electrode and a source electrode, the second conductive pattern has a source electrode and a drain electrode, an insulation layer pattern is positioned on the conductive pattern and exposes an outer sidewall of the conductive pattern, an organic layer is provided in the first region and the second region of the substrate and covers the insulation layer pattern, and a pixel electrode is provided on the organic layer and is electrically connected to the drain electrode through a contact hole in the organic layer.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 21, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung-Bo Shim, Jin-Ho Ju, Jun-Gi Kim, Yang-Ho Jung
  • Patent number: 9570436
    Abstract: The present invention provides a semiconductor device that prevents destruction due to an avalanche breakdown and that has a high tolerance against breakdown by configuring the device so as to have a punch-through breakdown function therein and such that the breakdown voltage of a punch-through breakdown is lower than an avalanche breakdown voltage so that an avalanche breakdown does not occur.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 14, 2017
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Akira Nakajima, Shinichi Nishizawa, Hiromichi Ohashi
  • Patent number: 9570684
    Abstract: Example embodiments relate to methods of doping a 2-dimensional semiconductor. The method includes forming a semiconductor layer on a substrate, implanting ions into the semiconductor layer, forming a doped layer formed of a 2-dimensional semiconductor layer or an organic semiconductor layer on the semiconductor layer, and doping the doped layer by diffusing the ions of the semiconductor layer into the doped layer through annealing the substrate.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: February 14, 2017
    Assignees: Samsung Electronics Co., Ltd., Research & Business Foundation Sungkyunkwan University
    Inventors: Jin-hong Park, Hyung-youl Park, Jae-woo Shim, Jae-ho Lee
  • Patent number: 9570466
    Abstract: Techniques for fabricating passive devices in an extremely-thin silicon-on-insulator (ETSOI) wafer are provided. In one aspect, a method for fabricating one or more passive devices in an ETSOI wafer is provided. The method includes the following steps. The ETSOI wafer having a substrate and an ETSOI layer separated from the substrate by a buried oxide (BOX) is provided. The ETSOI layer is coated with a protective layer. At least one trench is formed that extends through the protective layer, the ETSOI layer and the BOX, and wherein a portion of the substrate is exposed within the trench. Spacers are formed lining sidewalls of the trench. Epitaxial silicon templated from the substrate is grown in the trench. The protective layer is removed from the ETSOI layer. The passive devices are formed in the epitaxial silicon.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: February 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ming Cai, Dechao Guo, Chun-Chen Yeh
  • Patent number: 9564507
    Abstract: A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first tensile dielectric layer on the substrate; a metal gate in the first tensile dielectric layer; a second tensile dielectric layer on the first tensile dielectric layer; and a contact plug in the first tensile dielectric layer and the second tensile dielectric layer. Preferably, the top surface of the contact plug is even with the top surface of the second tensile dielectric layer, and a carbon content of the second tensile dielectric layer is greater than the carbon content of the first tensile dielectric layer.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 7, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Cheng Lin, Hui-Shen Shih
  • Patent number: 9536862
    Abstract: Semiconductor integrated circuits (110) or assemblies are disposed at least partially in cavities between two interposers (120). Conductive vias (204M) pass through at least one of the interposers or at least through the interposer's substrate, and reach a semiconductor integrated circuit or an assembly. Other conductive vias (204M.1) pass at least partially through multiple interposers and are connected to conductive vias that reach, or are capacitively coupled to, a semiconductor IC or an assembly. Other features are also provided.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: January 3, 2017
    Assignee: Invensas Corporation
    Inventors: Hong Shen, Charles G. Woychik, Arkalgud R. Sitaram
  • Patent number: 9530726
    Abstract: A semiconductor device includes a via structure having a top surface with a planar portion and a protrusion portion that is surrounded by the planar portion, and includes a conductive structure including a plurality of conductive lines contacting at least a part of the top surface of the via structure.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 27, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-jin Moon, Byung-Iyul Park, Dong-chan Lim, Deok-young Jung, Gil-heyun Choi, Dae-lok Bae, Pil-kyu Kang
  • Patent number: 9520501
    Abstract: The present invention is a semiconductor device comprising a semiconducting low doped vertical super-thin body (VSTB) formed on Dielectric Body Wall (such as STI-wall as isolating substrate) having the body connection to bulk semiconductor wafer on the bottom side, isolation on the top side, and the channel, gate dielectric, and gate electrode on opposite to STI side surface. The body is made self-aligned to STI hard mask edge allowing tight control of body thickness. Source and Drain are made by etching holes vertically in STI at STI side of the body and filling with high doped crystalline or poly-Si appropriately doped with any appropriate silicides/metal contacts or with Schottky barrier Source/Drain. Gate first or Gate last approaches can be implemented. Many devices can be fabricated in single active area with body isolation between the devices by iso-plugs combined with gate electrode isolation by iso-trenches.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: December 13, 2016
    Assignee: FinScale Inc.
    Inventors: Viktor I. Koldiaev, Rimma A. Pirogova
  • Patent number: 9508727
    Abstract: A method includes providing a plurality of active regions on a substrate, and at least a first device isolation layer between two of the plurality of active regions, wherein the plurality of active regions extend in a first direction; providing a gate layer extending in a second direction, the gate layer forming a plurality of gate lines including a first gate line and a second gate line extending in a straight line with respect to each other and having a space therebetween, each of the first gate line and second gate line crossing at least one of the active regions, providing an insulation layer covering the first device isolation layer and covering the active region around each of the first and second gate lines; and providing an inter-gate insulation region in the space between the first gate line and the second gate line.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: November 29, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hong-bae Park, Ja-hum Ku, Myeong-cheol Kim, Jin-wook Lee, Sung-kee Han
  • Patent number: 9508787
    Abstract: Two rows of resistive bodies, first resistive body and second resistive body, having slits are provided on an input matching circuit substrate. Since a high-frequency signal flows through not only the resistive bodies but also a transmission line pattern formed in the slits, the burnout of the resistive bodies can be prevented.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: November 29, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takaaki Yoshioka
  • Patent number: 9502686
    Abstract: Methods for forming an OLED device are described. An encapsulation structure having organic buffer layer and an interface layer disposed on the organic buffer layer sandwiched between barrier layers is deposited over an OLED structure. In one example, the method includes depositing a first barrier layer on a region of a substrate having an OLED structure disposed thereon, depositing a buffer layer with a fluorine-containing plasma formed from a first gas mixture containing a polymer gas precursor and a fluorine containing gas on the first barrier layer, depositing an interface layer on the buffer layer with a second gas mixture containing the polymer gas precursor, and depositing a second barrier layer on the interface layer.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: November 22, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jrjyan Jerry Chen, Soo Young Choi