Patents Examined by Tim Phan
  • Patent number: 7181836
    Abstract: An electronic device such as a sensor or a NEMS. The electronic device comprises at least one substrate; a plurality of electrodes disposed on the substrate; and at least one nano-wire growing from an edge of a first electrode to an edge of a second electrode. A method for making an electrode structure by providing a substrate; forming a plurality of electrodes on the substrate; growing at least one nano-wire from the edge of a first electrode; and connecting the at least one nano-wire to the edge of a second electrode is also disclosed.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: February 27, 2007
    Assignee: General Electric Company
    Inventor: Loucas Tsakalakos
  • Patent number: 7178235
    Abstract: A method for providing an encapsulated optoelectronic chip is provided. The optoelectronic chip is secured on a substrate. A translucent coating substance is then applied on said optoelectronic chip and the translucent coating substance is then polished away to enable an optical coupling.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: February 20, 2007
    Assignee: Reflex Photonics Inc.
    Inventors: David Robert Cameron Rolston, Tomasz Maj
  • Patent number: 7178223
    Abstract: A method of manufacturing a movable contact unit includes manufacturing a movable contact, sticking the movable contact to a base sheet made of insulating resin, and applying demagnetization to the movable contact so that the residual magnetic flux density is smaller than the operation magnetic flux density of the magnetic sensor. In manufacturing the movable contact, elastic metal plate material is processed into a downwardly opening dome shape to form the movable contact. In a method of manufacturing a switch panel, the movable contact unit is overlaid on a wiring board having a contact, including pair an outer fixed contact and a central fixed contact, that corresponds to the movable contact so that the lower end of the outer periphery of the movable contact is mounted on the outer fixed contact.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: February 20, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideki Mitsuoka, Hiromichi Koyama
  • Patent number: 7178219
    Abstract: A magneto-generator, a method of manufacturing the same and a resin molding die for manufacturing the same. In the magneto-generator, a guard ring is omitted with the performance of the magneto-generator being enhanced. The magneto-generator is manufactured by making use of a resin molding die (21) having an outer peripheral surface (21d) to be positioned in opposition to an inner peripheral surface of a flywheel (11) and projections (21a) provided in the outer peripheral surface (21d) for holding a plurality of magnets (12) at predetermined positions, respectively. The magnets (12) are positioned and held stationarily at predetermined positions by the aforementioned projections, respectively, and spaces defined between the resin molding die (21) and the inner peripheral surface of the flywheel (11) are filled with a resin. After hardening of the resin, the resin molding die (21) is detached from the flywheel (11).
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: February 20, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Fumito Uemura, Shinji Baba, Tomokazu Umezaki
  • Patent number: 7174632
    Abstract: A circuit board including a desired number of electrically insulating layers and wiring layers laminated alternately, and an inner via hole for securing an electrical connection between the wiring layers by compressing and hardening a conductive paste including a conductive particle and a resin. In the electrically insulating layer, a porous sheet is provided a resin sheet at least one surface, and the porous sheet is not impregnated with a resin at least at a central portion. A through hole penetrating the electrically insulating layer in the direction of the thickness of the electrically insulating layer is filled with a conductive paste including a conductive particle and a resin, and pores that are present inside the porous sheet are filled with laminated resin. The average hole diameter of the pores inside the porous sheet may be smaller than the average particle size of the conductive particle.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: February 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihiro Kawakita, Daizo Andoh, Fumio Echigo, Tadashi Nakamura
  • Patent number: 7171746
    Abstract: A process is described in which surfaces of foamed plastics are provided with electrical conductor tracks, with the aid of selectively ablating processes. The process permits low-cost production of moldings from plastic with conductor tracks integrated on the surface. The products of the process may be used in the electrical and electronics industries, for example.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: February 6, 2007
    Assignee: Ticona GmbH
    Inventors: Frank Reil, Stefan Diel
  • Patent number: 7168151
    Abstract: A method of manufacturing a yoke includes a step of cutting a steel plate into a rectangular sheet having a plurality of first dovetail convexities at one end thereof and a plurality of second dovetail convexities at the other end, a step of rolling the rectangular sheet into a cylinder to fit the first dove tails and the second dove tails to each other and a step of punching border portions of the first dove tails and the second dove tails. The second dovetail convexities are formed to be the same in shape as the first dovetail convexities so that they can fit to the first dovetail convexities. A smooth-faced yoke can be manufacture without using an expensive welder.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: January 30, 2007
    Assignee: Denso Corporation
    Inventors: Masami Niimi, Hideki Ichikawa, Akifumi Hosoya, Masahiro Katoh
  • Patent number: 7165315
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: January 23, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Patent number: 7165316
    Abstract: An electrical resistor is made by providing a sacrificial layer and conductive pads disposed on a first surface of the sacrificial layer. An electrically resistive material is deposited over the pads and on the first surface of the sacrificial layer to form at least one unit including the resistive material and the pads. At least part of the sacrificial layer is then removed so as to expose one or more of the pads.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: January 23, 2007
    Assignee: Tessera, Inc.
    Inventor: Joseph Fjelstad
  • Patent number: 7162796
    Abstract: A method of making an interposer having an array of contact structures for making temporary electrical contact with the leads of a chip package. The contact structures may make contact with the leads substantially as close as desired to the body of the chip package. Moreover, the contact structures can be adapted for making contact with leads having a very fine pitch. In a first embodiment, the contact structures include raised members formed over a body of the interposer. A conductive layer is formed over each of the raised members to provide a contact surface for engaging the leads of the chip package. In another embodiment, the raised members are replaced with depressions formed into the interposer. A conductive layer is formed on an inside surface of each depression to provide a contact surface for engaging the leads of the chip package. Moreover, any combination of raised members and depressions may be used.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: January 16, 2007
    Assignee: Micron Technology, Inc.
    Inventors: James M. Wark, Salman Akram
  • Patent number: 7162794
    Abstract: A multilayer integrated substrate includes breaking grooves arranged in a grid pattern so as to section the main surface of the substrate into a plurality of blocks, and also includes fracture-preventing conductor films arranged so as to cross the breaking grooves. The fracture-preventing conductor films contain a metal component that prevents undesirable fracturing of the multilayer integrated substrate along the breaking grooves.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: January 16, 2007
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Norio Sakai, Kazuhiro Iida
  • Patent number: 7162793
    Abstract: Reflow soldering of a variety of circuit boards (9, 11, 15) in a variety of sizes and shapes to assigned locations on the base or carrier (13) of the electronic module housing (3) is simplified by eliminating custom made metal blocks previously used to clamp the circuit boards against the carrier metal. Instead, the solder-backed circuit boards are placed in assigned positions in the module housing and the inside volume of that housing is filled (22) with particulate, such as small beads (17), covering the circuit boards, but leaving the edges of the upstanding metal shields (5 and 7) visible. A plate (21) backed foam sheet (19) is placed over the module housing (24) and clamped down (26), pressing against the beads. The clamped assembly is then heated (28) to reflow the solder, soldering the circuit boards in place.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: January 16, 2007
    Assignee: Northrop Grumman Corporation
    Inventors: Mark Kintis, Charles G. Turner
  • Patent number: 7159297
    Abstract: It is an object of the present invention to provide a method of manufacturing a rotor for an electric motor, in which displacement of the center of gravity is prevented. According to a feature of the present invention, a rotor for an electric motor comprises an inner core fixed to a rotating shaft of the rotor and multiple coil units respectively fixed to the inner core, wherein the coil unit has an outer core, a bobbin and a winding wound on the bobbin, and wherein weight of outer cores as well as winding units (the bobbin and the winding wound thereon) is respectively measured and stratified into several groups, necessary number of the outer cores and winding units are respectively picked out from the same stratified group and then such outer cores and winding units are assembled to the inner core.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: January 9, 2007
    Assignee: Denso Corporation
    Inventors: Shingo Inaishi, Shinya Ishikawa, Hirotsugu Douba, Ryuichi Kanbe
  • Patent number: 7159296
    Abstract: A stator stack and stator jig assembly provide a consistent amount of slack in stator coil wires without increasing the complexity of coil-winding machines or adding production steps, and prevent crossing of the stator coil wires in the slack areas. A stator stack having magnetic pole teeth is mounted in a stator installation jig, and the ends of slack forming plates having grooves are made to project above the top surface of the stator stack to thrust stator coil wires upwardly. The coil-winding machine winds stator coil wires around the magnetic pole teeth, and after the stator coil wires are wound, the ends of the stator coil wires are passed through grooves in the ends of the plates to output pins. The coil-winding machine wraps the ends of the stator coil wires around the output pins. On removing the stator from the stator installation jig, the parts of the stator coil wires which where thrust upward become slack areas.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: January 9, 2007
    Assignee: Minebea Co., Ltd.
    Inventors: Taiichi Miya, Naohiko Aoyama
  • Patent number: 7159306
    Abstract: A modular rotary anvil for mounting on an ultrasonic welding machine. The modular rotary anvil includes a first end segment configured to attach to the ultrasonic welding machine, a second end segment configured to attach to the ultrasonic welding machine, and at least one insert having a first side and a second side. Each of the first side and the second side is configured to attach to at least one of other inserts, the first end segment, and the second end segment.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 9, 2007
    Assignee: Methode Electronics, Inc.
    Inventors: Tom Schilson, Steve Kamps
  • Patent number: 7155804
    Abstract: A stator is provided for an electrical device (e.g., a motor) comprised of one or more stator segments formed by the compaction of one or more powdered metallic materials. Each stator section has at least one tooth that forms a substantially toroidal path for magnetic flux entering and leaving the stator segment. Each stator segment also has a continuous insulated electrical winding that is associated with the stator segment such that a magnetic field is induced in the stator segment when a current is passed through the continuous insulated electrical winding. The current that is passed through the continuous insulated electrical winding of any one stator segment is not of the same electrical phase as the current that is passed through the winding of any adjacent stator segment.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: January 2, 2007
    Assignee: Moog Inc.
    Inventor: John M. Calico
  • Patent number: 7155805
    Abstract: A rotary electric machine has a stator core and a winding. The winding has a plurality or sub-winding sets which are mounted on the stator in the order. Each of the sub-winding sets has a plurality of phase windings. Each of the phase windings is made of a continuous wire. The sub-winding sets are formed into a cylindrical shape having a plurality of straight portions and turn portions before the sub-winding sets are mounted on the stator core. The turn portions are regularly arranged to avoid collisions between the turn portions. It is possible to avoid collisions since the winding is mounted on.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: January 2, 2007
    Assignee: Denso Corporation
    Inventor: Shigenobu Nakamura
  • Patent number: 7155819
    Abstract: A method for forming a conductive circuit on a substantially non-conductive substrate includes indenting a major surface of a substrate with a plurality of features, plating the major surface and the indentations formed with a conductive layer, and removing a portion of the conductive layer leaving at least one of the plurality of the indentations filled with conductive material separated from at least one other of the plurality of the indentations filled with conductive material separated by non-conductive material. An electrical device formed includes a sheet of insulative material having grooves therein. The sheet of insulative material has a first planar surface, and a second planar surface. A conductive material is positioned within the grooves. The conductive material within the grooves forms electrical traces in the electrical device. The conductive material within the grooves fills the groove and includes a surface coplanar with at least one of the first planar surface or the second planar surface.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: January 2, 2007
    Assignee: Intel Corporation
    Inventors: David P McConville, Mark Vininski
  • Patent number: 7155812
    Abstract: A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 2, 2007
    Assignee: Sandia Corporation
    Inventors: Kenneth A. Peterson, Steven B. Rohde, Kent B. Pfeifer, Timothy S. Turner
  • Patent number: 7152318
    Abstract: A built-up printed circuit board includes stacked micro via-holes, each of which is provided for interconnection between layers in the printed circuit board, and in each of which a filling material, such as liquefied resin or conductive paste, is filled using a poly screen of a general screen printing machine.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: December 26, 2006
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Bong-Suck Kim, Gye-Soo Kim, Jong-Hyung Kim, Il-Woon Shin