Patents Examined by Tram H. Nguyen
  • Patent number: 9355912
    Abstract: A device includes an active region in a semiconductor substrate, a gate strip over and crossing the active region, and a jog over the active region and connected to the gate strip to form a continuous region. The jog is on a side of the gate strip. A first contact plug is at a same level as the gate strip, wherein the first contact plug is on the side of the gate strip. A second contact plug is over the jog and the first contact plug. The second contact plug electrically interconnects the first contact plug and the jog.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: May 31, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Wu, Tung-Heng Hsieh, Jiun-Ming Kuo, Min-Hsiung Chiang, Che-Yuan Hsu
  • Patent number: 9355993
    Abstract: A system and method of manufacture of an integrated circuit system includes: a die having a via, the die having a top side and a bottom side; a top interconnect mounted to the via at the top side; an interconnect pillar mounted to the via at the bottom side; a device interconnect mounted to the interconnect pillar; and a base adhesive covering the interconnect pillar and the device interconnect.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: May 31, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Won Kyoung Choi, Pandi Chelvam Marimuthu
  • Patent number: 9349784
    Abstract: An organic light-emitting display apparatus includes: a substrate; a thin film transistor formed on the substrate; a pixel electrode connected to at least one of the source or drain electrodes; a pixel-defining layer having a first opening exposing at least a portion of the pixel electrode and a second opening adjacent to the first opening; an intermediate layer formed on the pixel electrode, including an organic emission layer, and having a first hole corresponding to the second opening; an opposite electrode formed on the intermediate layer; and first and second auxiliary electrodes formed below the pixel-defining layer, at least portions of the first and second auxiliary electrodes are exposed through the second opening, where ends of the first and second auxiliary electrodes are spaced apart from each other, and where the opposite electrode contacts the ends of the and second first auxiliary electrodes which are exposed through the first hole.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: May 24, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Wonkyu Lee, Hyunchul Kim, Wonmo Park
  • Patent number: 9343401
    Abstract: A method for fabricating a semiconductor package is provided, which includes the steps of: providing a packaging substrate having a first surface with a plurality of bonding pads and an opposite second surface; disposing a plurality of passive elements on the first surface of the packaging substrate; disposing a semiconductor chip on the passive elements through an adhesive film; electrically connecting the semiconductor chip and the bonding pads through a plurality of bonding wires; and forming an encapsulant on the first surface of the packaging substrate for encapsulating the semiconductor chip, the passive elements and the bonding wires. By disposing the passive elements between the packaging substrate and the semiconductor chip, the invention saves space on the packaging substrate and increases the wiring flexibility. Further, since the bonding wires are not easy to come into contact with the passive elements, the invention prevents a short circuit from occurring.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: May 17, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chi-Liang Shih, Hsin-Lung Chung, Te-Fang Chu, Sheng-Ming Yang, Hung-Cheng Chen, Chia-Yang Chen
  • Patent number: 9337241
    Abstract: An electronic device may include a display having an array of organic light-emitting diode display pixels. The display pixels may have subpixels of different colors. The subpixels may include red subpixels, green subpixels, and blue subpixels. The subpixels may be provided with shapes and orientations that improve manufacturing tolerances. Subpixels such as green and red subpixels may have hexagonal shapes while blue subpixel structures may be provided with diamond shapes coupled in pairs to form barbell-shaped blue subpixels. Subpixels can also be angled at 45° relative to horizontal. Subpixels ma have shapes that overlap adjacent display pixels. For example, an array of display pixels that has been rotated by 45° relative to the edges of a display substrate may have blue subpixels and or red subpixels that are shared between pairs of adjacent display pixels in an at of display pixels.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: May 10, 2016
    Assignee: Apple Inc.
    Inventors: Jungmin Lee, ChoongHo Lee, Jinkwang Kim
  • Patent number: 9335596
    Abstract: Embodiments of the present invention disclose an array substrate, a display device and a repair method of the array substrate. The array substrate comprises a display region; a peripheral region, in which a peripheral circuit including a plurality of leading wires is provided, and the peripheral region including: an insulation layer, provided above a layer in which the peripheral circuit is provided; and a leading wire repair layer, provided above the insulation layer, wherein the leading wire repair layer includes at least two common repair lines extended along an arrangement direction of the leading wires in the peripheral circuit, and a plurality of repair lines electrically connected the at least two common repair lines are provided between the two adjacent common repair lines.
    Type: Grant
    Filed: December 14, 2013
    Date of Patent: May 10, 2016
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Pijian Jia, Woong Sun Yoon, Zhaohui Hao
  • Patent number: 9337202
    Abstract: A semiconductor device includes a first conductive structure including a first conductive pattern that is formed over a substrate, a second conductive structure formed adjacent to a sidewall of the first conductive structure, and an insulation structure including an air gap that is formed between the first conductive structure and the second conductive structure, wherein the second conductive structure includes a second conductive pattern, an ohmic contact layer that is to formed over the second conductive pattern, and a third conductive pattern that is formed over the ohmic contact layer and is separated from the first conductive pattern through the air gap.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: May 10, 2016
    Assignee: SK Hynix Inc.
    Inventors: Sung-Won Lim, Seung-Jin Yeom, Hyo-Seok Lee
  • Patent number: 9337334
    Abstract: A semiconductor memory device including a channel region and a ferromagnetic gate is provided. The channel region can be formed within a semiconductor nanowire. The ferromagnetic gate is programmed with a selected orientation of magnetization by the electrical current that passes through the channel region in one direction or another. The orientation of the magnetization in the ferromagnetic gate can be detected by changes in the threshold voltage of a field effect transistor employing the ferromagnetic gate as a gate electrode, or can be detected by the resistance of the channel region that changes with the orientation of the magnetization in a two terminal device.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: May 10, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hari V. Mallela, Edward J. Nowak, Yunsheng Song, Reinaldo A. Vega, Keith Kwong Hon Wong, Zhijian Yang
  • Patent number: 9324557
    Abstract: A process to form metal pillars on a flip-chip device. The pillars, along with a layer of solder, will be used to bond die pads on the device to respective substrate pads on a substrate. A photoresist is deposited over the device and a first set of die pads on the device are exposed by forming openings of a first diameter in the photoresist. Pillars of the first diameter are formed by electroplating metal onto the exposed die pads. Then a second photoresist deposited over the first photoresist covers the pillars of the first diameter. Openings of a second diameter are formed in the first and second photoresists to expose a second set of die pads. Pillars of the second diameter are formed by electroplating metal onto the exposed die pads. The photoresists are then removed along with conductive layers on the device used as part of the plating process.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: April 26, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Steven D. Cate, John W. Osenbach
  • Patent number: 9312204
    Abstract: An integrated circuit and a method of forming an integrated circuit including a first dielectric layer including a surface, a plurality of first trenches defined in the dielectric layer surface, and a plurality of first wires, wherein each of the first wires are formed in each of the first trenches. The integrated circuit also includes a plurality of second trenches defined in the dielectric layer surface, and a plurality of second wires, wherein each of the second wires are formed in each of the second trenches. Further, the first wires comprise a first material having a first bulk resistivity and the second wires comprise a second material having a second bulk resistivity, wherein the first bulk resistivity and the second bulk resistivity are different.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 12, 2016
    Assignee: Intel Corporation
    Inventors: James S. Clarke, Anthony C. Schmitz, Richard E. Schenker
  • Patent number: 9293498
    Abstract: The present disclosure relates to a solid-state imaging element and an electronic device capable of suppressing occurrence of a dark current and acquiring higher image quality. The solid-state imaging element includes a high-concentration diffusion layer configured to serve as a connection portion by which a wiring is connected to a semiconductor substrate, and a junction leak control film formed to cover a surface of the diffusion layer. Also, to connect the wiring to the diffusion layer, a width of an opening formed in an insulation film stacked on the semiconductor substrate is greater than a width of the diffusion layer. Further, in a charge accumulation portion configured to accumulate a charge generated by a photoelectric conversion portion generating the charge according to an amount of received light, the junction leak control film is also used as a capacitor film of the charge accumulation portion.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: March 22, 2016
    Assignee: SONY CORPORATION
    Inventor: Naoyuki Sato
  • Patent number: 9287204
    Abstract: A semiconductor device has a plurality of semiconductor die disposed over a carrier. An electrical interconnect, such as a stud bump, is formed over the semiconductor die. The stud bumps are trimmed to a uniform height. A substrate includes a bump over the substrate. The electrical interconnect of the semiconductor die is bonded to the bumps of the substrate while the semiconductor die is disposed over the carrier. An underfill material is deposited between the semiconductor die and substrate. Alternatively, an encapsulant is deposited over the semiconductor die and substrate using a chase mold. The bonding of stud bumps of the semiconductor die to bumps of the substrate is performed using gang reflow or thermocompression while the semiconductor die are in reconstituted wafer form and attached to the carrier to provide a high throughput of the flipchip type interconnect to the substrate.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 15, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, HunTeak Lee, HeeJo Chi
  • Patent number: 9287560
    Abstract: Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 15, 2016
    Assignee: Amprius, Inc.
    Inventor: Tianyue Yu
  • Patent number: 9281259
    Abstract: A semiconductor device has a semiconductor die mounted to a carrier. A first encapsulant is deposited over the semiconductor die and carrier. A stiffening support member can be disposed over the carrier around the semiconductor die. A plurality of channels or recesses is formed in the first encapsulant. The recesses can be formed by removing a portion of the first encapsulant. Alternatively, the recesses are formed in a chase mold having a plurality of extended surfaces. A second encapsulant can be deposited into the recesses of the first encapsulant. The carrier is removed and an interconnect structure is formed over the semiconductor die and first encapsulant. The thickness of the first encapsulant provides sufficient stiffness to reduce warpage while the recesses provide stress relief during formation of the interconnect structure. A portion of the first encapsulant and recesses are removed to reduce thickness of the semiconductor device.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 8, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kang Chen, Jose Alvin Caparas, Glenn Omandam
  • Patent number: 9281274
    Abstract: An integrated circuit substrate via system, and method of manufacture therefor, includes: a substrate having a substrate via in the substrate; a buffer layer patterned over the substrate via, the buffer layer having a planar surface; and a substrate via cap patterned over the buffer layer, the substrate via cap having a planar surface based on the planar surface of the buffer layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 8, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Xing Zhao, Chang Bum Yong, Duk Ju Na, Kyaw Oo Aung, Ling Ji
  • Patent number: 9276225
    Abstract: The present disclosure relates to an electroluminescent diode device, comprising a transparent flexible substrate which is successively disposed with a first protective layer, an anode, a hole transport layer, a UV light emitting layer, a hole blocking layer, an electron transport layer, and a cathode, wherein the UV light emitting layer comprises a UV light emitting material which is at least one selected from the group consisting of fluorenes, triphenylamines, and quinquephenyls.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: March 1, 2016
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Yawei Liu
  • Patent number: 9266716
    Abstract: A microelectromechanical system (MEMS) microphone has a substrate including a backside trench, and a flexible membrane deposited on the substrate extending over the backside trench. The flexible membrane includes a first electrode. A silicon spacer layer is deposited on a perimeter portion of the flexible membrane. The spacer layer defines an acoustic chamber above the membrane and the backside trench. A silicon rich silicon nitride (SiN) backplate layer is deposited on top of the silicon spacer layer extending over the acoustic chamber. The backplate defines a plurality of opening into the acoustic chamber and includes a metallization that serves as a second electrode.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 23, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ando Feyh, Andrew Graham
  • Patent number: 9269888
    Abstract: A magnetic cell includes a magnetic tunnel junction that comprises magnetic and nonmagnetic materials exhibiting hexagonal crystal structures. The hexagonal crystal structure is enabled by a seed material, proximate to the magnetic tunnel junction, that exhibits a hexagonal crystal structure matching the hexagonal crystal structure of the adjoining magnetic material of the magnetic tunnel junction. In some embodiments, the seed material is formed adjacent to an amorphous foundation material that enables the seed material to be formed at the hexagonal crystal structure. In some embodiments, the magnetic cell includes hexagonal cobalt (h-Co) free and fixed regions and a hexagonal boron nitride (h-BN) tunnel barrier region with a hexagonal zinc (h-Zn) seed region adjacent the h-Co. The structure of the magnetic cell enables high tunnel magnetoresistance, high magnetic anisotropy strength, and low damping. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: February 23, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Roy E. Meade, Sumeet C. Pandey, Gurtej S. Sandhu
  • Patent number: 9264034
    Abstract: Various example embodiments are directed to methods and circuits for mitigation of on-resistance variation and signal attenuation in transistors due to body effects. In some embodiments, an apparatus includes a transistor configured to provide a data signal from a first one of the source or the drain to the other one of the source or the drain in response to a control signal provided to the gate. A body bias circuit is configured to bias the body of the transistor based on a voltage of the data signal to reduce variation in the on-resistance exhibited by the first transistor. In an embodiment, the apparatus includes body bias transistors and switches and the gates of the body bias transistors are connected to protect the body bias transistors from the effects of electrostatic discharge (ESD) events.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: February 16, 2016
    Assignee: NXP B.V.
    Inventor: Jong Koo Kim
  • Patent number: 9263370
    Abstract: A semiconductor device comprising a second surface of a logic die and a second surface of a via bar coupled to a first surface of a substrate, a second surface of a memory die coupled to a first surface of the via bar, a portion of the second surface of the memory die extending over the first surface of the logic die, such that the logic die and the memory die are vertically staggered, and the memory die electrically coupled to the logic die through the via bar. The via bar can be formed from glass, and include through-glass vias (TGVs) and embedded passives such as resistors, capacitors, and inductors. The semiconductor device can be formed as a single package or a package-on-package structure with the via bar and the memory die encapsulated in a package and the substrate and logic die in another package.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 16, 2016
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ravindra Vaman Shenoy, Kwan-yu Lai, Jon Bradley Lasiter, Philip Jason Stephanou, Donald William Kidwell, Jr., Evgeni Gousev