Patents Examined by Wasiul Haider
  • Patent number: 11538929
    Abstract: A semiconductor device includes first and third semiconductor layers of a first conductivity type, and second, fourth and fifth semiconductor layers of a second conductivity type. The first semiconductor layer is provided on the fifth semiconductor layer. The second semiconductor layer is provided on the first semiconductor layer. The third and fourth semiconductor layers are arranged along the second semiconductor layer. In a plane parallel to an upper surface of the second semiconductor layer, the fourth semiconductor layer has a surface area greater than a surface area of the third semiconductor layer. The device further includes first to third electrodes, and first control electrode. The first to third electrodes are electrically connected to the third to fifth semiconductor layers, respectively. The first control electrode is provided in a first trench extending into the first semiconductor layer from an upper surface of the third semiconductor layer.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 27, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Takeshi Suwa, Tomoko Matsudai, Yoko Iwakaji, Hiroko Itokazu, Takako Motai
  • Patent number: 11532611
    Abstract: The application provides a SCR and a manufacturing method thereof. The SCR comprises: a P-type heavily doped region 20 and an N-type heavily doped region 28 forming an anode formed on the upper part of an N-type well 60, a P-type heavily doped region 26 and an N-type heavily doped region 24 forming a cathode formed on the upper part of a P-type well 70, an active region of the N-type well 60 is between the N-type heavily doped region 28 and an interface of the N-type well 60 and the P-type well 70, a STI is provided between the N-type heavily doped region 24 and the interface, the STI is adjacent to the N-type heavily doped region 24, and an active region of the P-type well 70 is provided between the STI and the interface. The present application can improve trigger voltage of the SCR and save layout area.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 20, 2022
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventors: Tianzhi Zhu, Guanqun Huang, Haoyu Chen, Hua Shao
  • Patent number: 11532608
    Abstract: A semiconductor device including a protected element, a contact region, wiring, and a channel stopper region. The protected element is configured including a p-n junction diode between an anode region and a cathode region, and is arranged in an active layer of a substrate. The periphery of the diode is surrounded by an element isolation region. The contact region is arranged at a portion on a main face of the anode region, and is set with a same conductivity type as the anode region, and set with a higher impurity concentration than the anode region. The wiring is arranged over the diode. One end portion of the wiring is connected to the contact region and another end portion extends over a passivation film. The channel stopper region is arranged at a portion on the main face of the anode region under the wiring between the contact region and the element isolation region, and is set with an opposite conductivity type to the contact region.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 20, 2022
    Assignee: KABUSHIKI KAISHA TOKAI-RIKA-DENKI-SEISAKUSHO
    Inventor: Yoshikazu Kataoka
  • Patent number: 11532708
    Abstract: A semiconductor device includes a first field-effect transistor positioned over a substrate, a second field-effect transistor stacked over the first field-effect transistor, a third field-effect transistor stacked over the second field-effect transistor, and a fourth field-effect transistor stacked over the third field-effect transistor. A bottom gate structure is disposed around a first channel structure of the first field-effect transistor and positioned over the substrate. An intermediate gate structure is disposed over the bottom gate structure and around a second channel structure of the second field-effect transistor and a third channel structure of the third field-effect transistor. A top gate structure is disposed over the intermediate gate structure and around a fourth channel structure of the fourth field-effect transistor.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: December 20, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Lars Liebmann, Jeffrey Smith, Daniel Chanemougame, Paul Gutwin
  • Patent number: 11532701
    Abstract: A semiconductor isolation structure includes a handle layer, a buried insulation layer, a semiconductor layer, a deep trench isolation structure, and a heavy doping region. The buried insulation layer is disposed on the handle layer. The semiconductor layer is disposed on the buried insulation layer and has a doping type. The semiconductor layer has a functional area in which doped regions of a semiconductor device are to be formed. The deep trench isolation structure penetrates the semiconductor layer and the buried insulation layer, and surrounds the functional area. The heavy doping region is formed in the semiconductor layer, is disposed between the functional area and the deep trench isolation structure, and is surrounded by the deep trench isolation structure. The heavy doping region has the doping type. A doping concentration of the heavy doping region is higher than that of the semiconductor layer.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Fu Lin, Tsung-Hao Yeh, Chien-Hung Liu, Shiang-Hung Huang, Chih-Wei Hung, Tung-Yang Lin, Ruey-Hsin Liu, Chih-Chang Cheng
  • Patent number: 11532662
    Abstract: A method includes providing a semiconductor substrate having a front side surface and a back side surface opposite to the front side surface. A photosensitive region of the semiconductor substrate is etched to form a recess. A semiconductor material is deposited on the semiconductor substrate to form a radiation sensing member filling the recess. The semiconductor material has an optical band gap energy smaller than 1.77 eV. A device layer is formed over the front side surface of the semiconductor substrate and the radiation sensing member. A trench isolation is formed in an isolation region of the semiconductor substrate and extending from the back side surface of the semiconductor substrate.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Yu Wei, Yen-Liang Lin, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Patent number: 11532730
    Abstract: Stress memorization techniques (SMTs) for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a capping layer over a fin structure; forming an amorphous region within the fin structure while the capping layer is disposed over the fin structure; and performing an annealing process to recrystallize the amorphous region. The capping layer enables the fin structure to retain stress effects induced by forming the amorphous region and/or performing the annealing process.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Cheng Lo, Sun-Jay Chang
  • Patent number: 11532655
    Abstract: An image-sensing device is provided. The image-sensing device includes a substrate, a light-sensing element, a first dielectric layer, a light-guiding structure, and a patterned conductive layer. The light-sensing element is disposed in the substrate. The first dielectric layer is disposed on the first side of the substrate. The light-guiding structure is disposed in the first dielectric layer. The patterned conductive layer is disposed between the light-sensing element and the light-guiding structure. In addition, the patterned conductive layer includes a subwavelength structure. An image-sensing system including the above image-sensing device is also provided.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: December 20, 2022
    Assignee: SILICON OPTRONICS, INC.
    Inventors: Yen-Chen Chang, Bo-Ray Lee
  • Patent number: 11532501
    Abstract: A semiconductor-on-insulator (e.g., silicon-on-insulator) structure having superior radio frequency device performance, and a method of preparing such a structure, is provided by utilizing a single crystal silicon handle wafer sliced from a float zone grown single crystal silicon ingot.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: December 20, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Michael R. Seacrist, Robert W. Standley, Jeffrey L. Libbert, Hariprasad Sreedharamurthy, Leif Jensen
  • Patent number: 11532607
    Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of first semiconductor layers and a plurality of second semiconductor layers. The first semiconductor layers and the second semiconductor layers are alternatingly stacked over the semiconductor substrate and between the first and second epitaxy regions. Each of the first and second semiconductor layers has a first side contacting the first epitaxy region and a second side contacting the second epitaxy region, and the first side is opposite the second side.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chia Hsu, Tung-Heng Hsieh, Yung-Feng Chang, Bao-Ru Young, Jam-Wem Lee, Chih-Hung Wang
  • Patent number: 11527607
    Abstract: A semiconductor device includes at least one transistor, a shallow well region, a guard ring, and a plurality of first and second doped regions. The transistor is on a substrate and includes a source structure, a gate structure, and a drain structure. The shallow well region surrounds the transistor. The shallow well region has a first conductivity type. The guard ring surrounds the shallow well region. The guard ring has the first conductivity type. The first and second doped regions are disposed on the guard ring and surround the well region. The first doped regions and the second doped regions are alternately arranged in a shape of a loop. Each of the first doped regions and each of the second doped regions have opposite conductivity types.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: December 13, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Karuna Nidhi, Chih-Hsuan Lin, Jian-Hsing Lee, Hwa-Chyi Chiou
  • Patent number: 11527660
    Abstract: A semiconductor device having, in a plan view thereof, an active region and a termination region that surrounds a periphery of the active region. The device includes a semiconductor substrate containing a wide bandgap semiconductor, a first-conductivity-type region provided in the semiconductor substrate, spanning from the active region to the termination region, a plurality of second-conductivity-type regions provided between the first-conductivity-type region and the first main surface of the semiconductor substrate in the active region, a first electrode provided on a first main surface of the semiconductor substrate and electrically connected to the second-conductivity-type regions, a second electrode provided on the second main surface of the semiconductor substrate and electrically connected to the first-conductivity-type region, and a lifetime killer region provided in the first-conductivity-type region and spanning from the active region to the termination region.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 13, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yasuyuki Hoshi
  • Patent number: 11527626
    Abstract: A field-plate trench FET having a drain region, an epitaxial layer, a source region, a gate conductive layer formed in a trench, a field-plate dielectric layer formed on vertical sidewalls of the trench, a well region formed below the trench, a source contact and a gate contact. When the well region is in direct physical contact with the gate conductive layer, the field-plate trench FET can be used as a normally-on device working depletion mode, and when the well region is electrically isolated from the gate conductive layer by the field-plate layer, the field-plate trench FET can be used as a normally-off device working in an accumulation-depletion mode.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: December 13, 2022
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ignacio Cortes Mayol, Philippe Godignon, Victor Soler, Jose Rebollo
  • Patent number: 11527683
    Abstract: Embodiments disclosed herein include micro light emitting device (LED) display panels and methods of forming such devices. In an embodiment, a display panel includes a display backplane substrate, a light emitting element on the display backplane, a transparent conductor over the light emitting element, a dielectric layer over the transparent conductor, and a color conversion device over the light emitting element. In an embodiment, the dielectric layer separates the transparent conductor from the color conversion device.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 13, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Khaled Ahmed, Anup Pancholi
  • Patent number: 11527637
    Abstract: Disclosed herein are methods for forming MOSFETs. In some embodiments, a method may include providing a device structure including a plurality of trenches, forming an oxide layer over the device structure including within each of the plurality of trenches and over a top surface of the device structure, and implanting a first portion of the oxide layer using an ion implant delivered to the device structure at a non-zero angle of inclination relative to a perpendicular extending from a top surface of the device structure. The method may further include removing the oxide layer from the top surface of the device structure and from a sidewall of each of the plurality of trenches, wherein a second portion of the oxide layer remains along a bottom of each of the plurality of trenches.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: December 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Qintao Zhang, Samphy Hong
  • Patent number: 11527529
    Abstract: An electrostatic discharge protection device including a substrate, a first PNP element, a second PNP element, and an isolation region is provided. The substrate has a P-type conductivity. The first and second PNP elements are formed in the substrate. The isolation region isolates the first and second PNP elements.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 13, 2022
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsin Lin, Yeh-Jen Huang, Chun-Jung Chiu, Jian-Hsing Lee
  • Patent number: 11508716
    Abstract: An integrated circuit includes a load circuit and an electrostatic discharge (ESD) circuit. The load circuit includes a first and a second I/O terminal. The ESD circuit is coupled to the first and the second I/O terminal. The ESD circuit includes a first protection circuit configured to conduct a first ESD current from the first to the second I/O terminal. The first protection circuit includes a first, a second, a third doped region, and a well. The first doped region is coupled to the first I/O terminal, and has a first conductive type. The well is coupled to the first doped region, and has a second conductive type different from the first conductive type. The second doped region is coupled to the well, and has the first conductive type. The third doped region couples the second doped region to the second I/O terminal, and has the second conductive type.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 22, 2022
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Tay-Her Tsaur, Cheng-Cheng Yen
  • Patent number: 11508855
    Abstract: A varactor structure includes a substrate. A first and second gate structure are disposed on the substrate. The first and second gate structures each include a base portion and a plurality of line portions connected thereto. The line portions of each of the first and second gate structures is alternately arranged. A meander diffusion region is formed in the substrate and surrounds the line portions. A first set of contact plugs is planned with at least two columns or rows and disposed on the base portions of the first and second gate structures. A second set of contact plugs is planned with at least two columns or rows and disposed on the meander diffusion region. A first conductive layer is disposed on a top end of the first set of contact plugs. A second conductive layer is disposed on a top end of the second set of contact plugs.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: November 22, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Su Xing
  • Patent number: 11508717
    Abstract: A silicon-controlled rectifier (SCR) includes a semiconductor body including a first main surface and an active device region. First through fourth surface contact areas at the first main surface are arranged directly one after another along a lateral direction. The semiconductor body is electrically contacted at each surface contact area. First and third SCR regions of a first conductivity type directly adjoin the first and third surface contact areas, respectively. Second and fourth SCR regions of a second conductivity type directly adjoin the second and fourth surface contact areas, respectively. The second SCR region at least partially overlaps a first well region of the first conductivity type at the first main surface. The first SCR region at most partially overlaps the first well region at the first main surface, and is electrically connected to the second SCR region. The third SCR region is electrically connected to the fourth SCR region.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: November 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Christian Cornelius Russ, Gabriel-Dumitru Cretu, Filippo Magrini
  • Patent number: 11508836
    Abstract: A semiconductor device includes a semiconductor substrate, multiple trench gate structures and an emitter region. The semiconductor substrate includes: a drift layer of a first conductivity type; a base layer of a second conductivity type disposed on the drift layer; and a collector layer of the second conductivity type, the collector layer disposed at a position opposite to the base layer with the drift layer sandwiched between the base layer and the collector layer. Each of the trench gate structures includes: a trench penetrating the base layer and reaching the drift layer; a gate insulation film is disposed at a wall surface of the trench; and a gate electrode disposed on the gate insulation film. The emitter region is disposed on a surface layer portion of the base layer and is in contact with the trench.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 22, 2022
    Assignee: DENSO CORPORATION
    Inventors: Masakazu Itoh, Hiroki Sakane