Patents by Inventor Alon Naveh

Alon Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11243768
    Abstract: Disclosed embodiments relate to processing logic for performing function operations. In one example, and apparatus includes an execution unit within a processor to execute a code block, power management hardware coupled to the execution unit, wherein the power management hardware is to monitor a first execution of the code block, store a micro-architectural context of the processor in a metadata block associated with the code block, the micro-architectural context including performance data resulting from the first execution of the code block, the performance data comprising power and energy usage data, and power management related parameters, read the associated metadata block upon a second execution of the code block, and tune the second execution based on the performance data stored in the associated metadata block to increase efficiency of executing the code block.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 8, 2022
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Eliezer Weissmann, Boris Ginzburg, Alon Naveh, Nadav Shulman, Ronny Ronen
  • Publication number: 20200319806
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Application
    Filed: December 16, 2019
    Publication date: October 8, 2020
    Applicant: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajwan, Ryan D. Wells, Eric C. Samson
  • Patent number: 10613614
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: April 7, 2020
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 10564699
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 18, 2020
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 10509576
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: December 17, 2019
    Assignee: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajwan, Ryan D. Wells, Eric C. Samson
  • Patent number: 10503517
    Abstract: A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Eliezer Weissmann, Rinat Rappoport, Michael Mishaeli, Hisham Shafi, Oron Lenz, Jason W. Brandt, Stephen A. Fischer, Bret L. Toll, Inder M. Sodhi, Alon Naveh, Ganapati N. Srinivasa, Ashish V. Choubal, Scott D. Hahn, David A. Koufaty, Russel J. Fenger, Gaurav Khanna, Eugene Gorbatov, Mishali Naik, Andrew J. Herdrich, Abirami Prabhakaran, Sanjeev S. Sahagirdar, Paul Brett, Paolo Narvaez, Andrew D. Henroid, Dheeraj R. Subbareddy
  • Patent number: 10474218
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 12, 2019
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 10379596
    Abstract: In one embodiment, a processor includes: a plurality of cores; a power controller including a logic to autonomously demote a first request for at least one core of the plurality of cores to enter a first low power state, to cause the at least one core to enter a second low power state, the first low power state a deeper low power state than the second low power state; and an interface to receive an input from a system software, the input including at least one demotion control parameter, where the logic is to autonomously demote the first request based at least in part on the at least one demotion control parameter. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: August 13, 2019
    Assignee: Intel Corporation
    Inventors: Eliezer Weissmann, Nir Rosenzweig, Efraim Rotem, Yoav Ben-Raphael, Alon Naveh
  • Patent number: 10372197
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 6, 2019
    Assignee: Intel Corporation
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20190235611
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Publication number: 20190155606
    Abstract: Disclosed embodiments relate to processing logic for performing function operations. In one example, and apparatus includes an execution unit within a processor to execute a code block, power management hardware coupled to the execution unit, wherein the power management hardware is to monitor a first execution of the code block, store a micro-architectural context of the processor in a metadata block associated with the code block, the micro-architectural context including performance data resulting from the first execution of the code block, the performance data comprising power and energy usage data, and power management related parameters, read the associated metadata block upon a second execution of the code block, and tune the second execution based on the performance data stored in the associated metadata block to increase efficiency of executing the code block.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Efraim Rotem, Eliezer Weissmann, Boris Ginzburg, Alon Naveh, Nadav Shulman, Ronny Ronen
  • Publication number: 20190121423
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Publication number: 20190121422
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Publication number: 20190041966
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Application
    Filed: July 2, 2018
    Publication date: February 7, 2019
    Inventors: EFRAIM ROTEM, OREN LAMDAN, ALON NAVEH
  • Patent number: 10191742
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. Power management hardware during runtime monitors execution of a code block. The code block has been compiled to have a reserved space appended to one end of the code block. The reserved space includes a metadata block associated with the code block or an identifier of the metadata block. The hardware stores a micro-architectural context of the processor in the metadata block. The micro-architectural context includes performance data resulting from a first execution of the code block. The hardware reads the metadata block upon a second execution of the code block and tunes the second execution based on the performance data.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Eliezer Weissmann, Boris Ginzburg, Alon Naveh, Nadav Shulman, Ronny Ronen
  • Patent number: 10185566
    Abstract: In one embodiment, the present invention includes a multicore processor having first and second cores to independently execute instructions, the first core visible to an operating system (OS) and the second core transparent to the OS and heterogeneous from the first core. A task controller, which may be included in or coupled to the multicore processor, can cause dynamic migration of a first process scheduled by the OS to the first core to the second core transparently to the OS. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Yuval Yosef, Eliezer Weissmann, Anil Aggarwal, Efraim Rotem, Avi Mendelson, Ronny Ronen, Boris Ginzburg, Michael Mishaeli, Scott D. Hahn, David A. Koufaty, Ganapati Srinivasa, Guy Therien
  • Publication number: 20190011975
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 10, 2019
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 10162687
    Abstract: A processor of an aspect includes at least one lower processing capability and lower power consumption physical compute element and at least one higher processing capability and higher power consumption physical compute element. Migration performance benefit evaluation logic is to evaluate a performance benefit of a migration of a workload from the at least one lower processing capability compute element to the at least one higher processing capability compute element, and to determine whether or not to allow the migration based on the evaluated performance benefit. Available energy and thermal budget evaluation logic is to evaluate available energy and thermal budgets and to determine to allow the migration if the migration fits within the available energy and thermal budgets. Workload migration logic is to perform the migration when allowed by both the migration performance benefit evaluation logic and the available energy and thermal budget evaluation logic.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 25, 2018
    Assignee: Intel Corporation
    Inventors: Eugene Gorbatov, Alon Naveh, Inder M. Sodhi, Ganapati N. Srinivasa, Eliezer Weissmann, Guarav Khanna, Mishali Naik, Russell J. Fenger, Andrew D. Henroid, Dheeraj R. Subbareddy, David A. Koufaty, Paolo Narvaez
  • Patent number: 10127039
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. A save instruction is executed to store a micro-architectural state and an architectural state of a processor in a common buffer of a memory upon a context switch that suspends the execution of a process. The micro-architectural state contains performance data resulting from the execution of the process. A restore instruction is executed to retrieve the micro-architectural state and the architectural state from the common buffer upon a resumed execution of the process. Power management hardware then uses the micro-architectural state as an intermediate starting point for the resumed execution.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: November 13, 2018
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Eliezer Weissmann, Michael Mishaeli, Boris Ginzburg, Alon Naveh
  • Publication number: 20180260153
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Application
    Filed: October 17, 2017
    Publication date: September 13, 2018
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajwan, Ryan D. Wells, Eric C. Samson