Patents by Inventor Alon Naveh

Alon Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9075610
    Abstract: An apparatus, method and system is described herein for thread consolidation. Current processor utilization is determined. And consolidation opportunities are identified from the processor utilization and other exaction parameters, such as estimating a new utilization after consolidation, determining if power savings would occur based on the new utilization, and performing migration/consolidation of threads to a subset of active processing elements. Once the consolidation is performed, the non-subset processing elements that are now idle are powered down to save energy and provide an energy efficient execution environment.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: July 7, 2015
    Assignee: Intel Corporation
    Inventors: Eliezer Weissmann, Efraim Rotem, Avinash N. Ananthakrishnan, Alon Naveh, Hisham Abu Salah, Nadav Shulman
  • Patent number: 9075614
    Abstract: A processor may include a core and an uncore area. The power consumed by the core area may be controlled by controlling the Cdyn of the processor such that the Cdyn is within an allowable Cdyn value irrespective of the application being processed by the core area. The power management technique includes measuring digital activity factor (DAF), monitoring architectural and data activity levels, and controlling power consumption by throttling the instructions based on the activity levels. As a result of throttling the instructions, throttling may be implemented in 3rd droop and thermal design point (TDP). Also, the idle power consumed by the uncore area while the core area is in deep power saving states may be reduced by varying the reference voltage VR and the VP provided to the uncore area. As a result, the idle power consumed by the uncore area may be reduced.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: July 7, 2015
    Assignee: Intel Corporation
    Inventors: Eric Fetzer, Reid Riedlinger, Don Soltis, William Bowhill, Satish Shrimali, Krishnakanth Sistla, Efraim Rotem, Rakesh Kumar, Vivek Garg, Alon Naveh, Lokesh Sharma
  • Patent number: 9069555
    Abstract: A processor may include a core and an uncore area. The power consumed by the core area may be controlled by controlling the dynamic capacitance of the processor such that the dynamic capacitance is within an allowable dynamic capacitance value irrespective of the application being processed by the core area. The power management technique includes measuring digital activity factor (DAF), monitoring architectural and data activity levels, and controlling power consumption by throttling the instructions based on the activity levels. As a result of throttling the instructions, throttling may be implemented in 3rd droop and thermal design point (TDP). Also, the idle power consumed by the uncore area while the core area is in deep power saving states may be reduced by varying the reference voltage VR and the VP provided to the uncore area. As a result, the idle power consumed by the uncore area may be reduced.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: June 30, 2015
    Assignee: Intel Corporation
    Inventors: Eric Fetzer, Reid J. Reidlinger, Don Soltis, William J. Bowhill, Satish Shrimali, Krishnakanth Sistla, Efraim Rotem, Rakesh Kumar, Vivek Garg, Alon Naveh, Lokesh Sharma
  • Patent number: 9063729
    Abstract: Embodiments of the present invention provide an apparatus, system, and method of generating an execution instruction. Some demonstrative embodiments my include generating an execution instruction of a predetermined executable format based on memory address data of a memory-access instruction representing a memory address. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: June 23, 2015
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Eliezer Weissmann, Itamar Kazachinsky, Iris Sorani, Yair Kazarinov
  • Publication number: 20150169043
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: February 25, 2015
    Publication date: June 18, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Patent number: 9026829
    Abstract: Methods and apparatus to optimize package level power state usage are described. In one embodiment, a processor control logic receives a request to enter a lower power consumption state (such as a package level deeper sleep state). The control logic determines the time difference or delta between a last entry into the lower power consumption state and the current time. The control logic then causes the flushing of a last level cache based on a comparison of the time difference and a threshold value corresponding to the lower power consumption state. Other embodiments are also claimed and disclosed.
    Type: Grant
    Filed: September 25, 2010
    Date of Patent: May 5, 2015
    Assignee: Intel Corporation
    Inventors: Eliezer Weissmann, Alon Naveh, Nadav Shulman, Hisham Abu Salah, Dan Baum
  • Patent number: 8996895
    Abstract: A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 31, 2015
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Eliezer Weissmann, Ofer Nathan, Nadav Shulman
  • Publication number: 20150058667
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 26, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20150052377
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 19, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20150006938
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: April 16, 2014
    Publication date: January 1, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20150006937
    Abstract: In one embodiment an apparatus includes a temperature sensor to perform a multiplicity of junction temperature measurements for a component in a platform, a controller comprising logic at least a portion of which is in hardware. The logic may receive from the temperature sensor the multiplicity of junction temperature measurements and may instruct the component to perform a first power down action of the component when a junction temperature measurement exceeds a first threshold, and may instruct the component to perform a second power down action of the component when an average junction temperature based on the multiplicity of junction temperature measurements exceeds a second threshold. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: EFRAIM ROTEM, ALON NAVEH, DORON RAJWAN, NADAV SHULMAN, ELIEZER WEISSMANN
  • Publication number: 20140325184
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. Power management hardware during runtime monitors execution of a code block. The code block has been compiled to have a reserved space appended to one end of the code block. The reserved space includes a metadata block associated with the code block or an identifier of the metadata block. The hardware stores a micro-architectural context of the processor in the metadata block. The micro-architectural context includes performance data resulting from a first execution of the code block. The hardware reads the metadata block upon a second execution of the code block and tunes the second execution based on the performance data.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 30, 2014
    Inventors: Efraim Rotem, Eliezer Weissamann, Boris Ginzburg, Alon Naveh, Nadav Shulman, Ronny Ronen
  • Publication number: 20140317430
    Abstract: A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Alon Naveh, Eliezer Weissmann, Ofer Nathan, Nadav Shulman
  • Publication number: 20140281457
    Abstract: A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
    Type: Application
    Filed: March 29, 2013
    Publication date: September 18, 2014
    Inventors: Elierzer Weissmann, Rinat Rappoport, Michael Mishaeli, Hisham Shafi, Oron Lenz, Jason W. Brandt, Stephen A. Fischer, Bret L. Toll, Inder M. Sodhi, Alon Naveh, Ganapati N. Srinivasa, Ashish V. Choubal, Scott D. Hahn, David A. Koufaty, Russel J. Fenger, Gaurav Khanna, Eugene Gorbatov, Mishali Naik, Andrew J. Herdrich, Abirami Prabhakaran, Sanjeev S. Sahagirdar, Paul Brett, Paolo Narvaez, Andrew D. Henroid, Dheeraj R. Subbareddy
  • Publication number: 20140281634
    Abstract: Methods and apparatus relating to controlling power consumption by a Power Supply Unit (PSU) during idle state are described. In one embodiment, a power supply unit enters a lower power consumption state (e.g. S9) based on power state information, corresponding to one or more components of the platform, and comparison of a first value (corresponding to a frequency/frequentness of entry into the lower power consumption state) to a first threshold value. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: EFRAIM ROTEM, BENJAMIN J. GOULD, JAMES G. HERMERDING, II, JORGE P. RODRIGUEZ, ALON NAVEH, NIR ROSENZWEIG, VIJAY S. R. DEGALAHAL
  • Publication number: 20140245034
    Abstract: Methods and apparatus relating to multi-level CPU (Central Processing Unit) high current protection are described. In one embodiment, different workloads may be assigned different license types and/or weights based on micro-architectural events (such as uop (micro-operation) types and sizes) and/or data types. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 30, 2011
    Publication date: August 28, 2014
    Inventors: Efraim Rotem, Nir Rosenzweig, Doron Rajwan, Alon Naveh, Eliezer Weissmann
  • Patent number: 8819461
    Abstract: Embodiments of the invention relate to improving exit latency from computing device processor core deep power down. Processor state data may be maintained during deep power down mode by providing a secondary uninterrupted voltage supply to always on keeper circuits that reside within critical state registers of the processor. When these registers receive a control signal indicating that the processor power state is going to be reduced from an active processor power state to a zero processor power state, they write critical state data from the critical state register latches to the keeper circuits that are supplied with the uninterrupted power. Then, when a register receives a control signal indicating that a processor power state of the processor is going to be increased back to an active processor power state, the critical state data stored in the keeper circuits is written back to the critical state register latches.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Michael Zelikson, Sanjeev s. Jahagirdar, Varghese George
  • Patent number: 8799687
    Abstract: A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Eliezer Weissmann, Ofer Nathan, Nadav Shulman
  • Publication number: 20140189704
    Abstract: A heterogeneous processor architecture is described.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189299
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger