Patents by Inventor Alon Naveh

Alon Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10067553
    Abstract: In one embodiment, the present invention is directed to a processor having a plurality of cores and a cache memory coupled to the cores and including a plurality of partitions. The processor can further include a logic to dynamically vary a size of the cache memory based on a memory boundedness of a workload executed on at least one of the cores. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 4, 2018
    Assignee: Intel Corporation
    Inventors: Avinash N. Ananthakrishnan, Efraim Rotem, Eliezer Weissmann, Doron Rajwan, Nadav Shulman, Alon Naveh, Hisham Abu-Salah
  • Patent number: 10013047
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: July 3, 2018
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Oren Lamdan, Alon Naveh
  • Publication number: 20180060078
    Abstract: A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
    Type: Application
    Filed: August 8, 2017
    Publication date: March 1, 2018
    Inventors: Eliezer Weissmann, Rinat Rappoport, Michael Mishaeli, Hisham Shafi, Oron Lenz, Jason W. Brandt, Stephen A. Fischer, Bret L. Toll, Inder M. Sodhi, Alon Naveh, Ganapati N. Srinivasa, Ashish V, Choubal, Scott D. Hahn, David A. Koufaty, Russel J. Fenger, Gaurav Khanna, Eugene Gorbatov, Mishali Naik, Andrew J. Herdrich, Abirami Prabhakaran, Sanjeev S. Sahagirdar, Paul Brett, Paolo Narvaez, Andrew D. Henroid, Dheeraj R. Subbareddy
  • Publication number: 20180039322
    Abstract: In one embodiment, a processor includes: a plurality of cores; a power controller including a logic to autonomously demote a first request for at least one core of the plurality of cores to enter a first low power state, to cause the at least one core to enter a second low power state, the first low power state a deeper low power state than the second low power state; and an interface to receive an input from a system software, the input including at least one demotion control parameter, where the logic is to autonomously demote the first request based at least in part on the at least one demotion control parameter. Other embodiments are described and claimed.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 8, 2018
    Inventors: Eliezer Weissmann, Nir Rosenzweig, Efraim Rotem, Yoav Ben-Raphael, Alon Naveh
  • Patent number: 9874925
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: January 23, 2018
    Assignee: Intel Corporation
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Patent number: 9870044
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 16, 2018
    Assignee: Intel Corporation
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Patent number: 9841807
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 12, 2017
    Assignee: Intel Corporation
    Inventors: Sanjeev Jahagirdar, Varghese George, John Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20170308146
    Abstract: Methods and apparatus relating to multi-level CPU (Central Processing Unit) high current protection are described. In one embodiment, different workloads may be assigned different license types and/or weights based on micro-architectural events (such as uop (micro-operation) types and sizes) and/or data types. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: May 8, 2017
    Publication date: October 26, 2017
    Applicant: Intel Corporation
    Inventors: Efraim Rotem, Nir Rosenzweig, Doron Rajwan, Alon Naveh, Eliezer Weissmann
  • Patent number: 9792064
    Abstract: Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Doron Rajwan, Ryan D. Wells, Eric C. Samson
  • Patent number: 9785226
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Grant
    Filed: September 26, 2015
    Date of Patent: October 10, 2017
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Oren Lamdan, Alon Naveh
  • Publication number: 20170269672
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: December 11, 2015
    Publication date: September 21, 2017
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Patent number: 9766683
    Abstract: A processor includes at least one core, a power control unit, and a first interconnect to couple with a peripheral controller. The first interconnect is to provide a first uni-directional communication path for communication of first power management data from the processor to the peripheral controller. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 19, 2017
    Assignee: Intel Corporation
    Inventors: Shaun M. Conrad, William Knolla, Douglas R. Moran, Sm M. Rahman, Jawad Haj-Yihia, Alon Naveh, Ohad Falik
  • Patent number: 9727345
    Abstract: A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: August 8, 2017
    Assignee: Intel Corporation
    Inventors: Eliezer Weissmann, Rinat Rappoport, Michael Mishaeli, Hisham Shafi, Oron Lenz, Jason W. Brandt, Stephen A. Fischer, Bret L. Toll, Inder M. Sodhi, Alon Naveh, Ganapati N. Srinivasa, Ashish V. Choubal, Scott D. Hahn, David A. Koufaty, Russell J. Fenger, Gaurav Khanna, Eugene Gorbatov, Mishali Naik, Andrew J. Herdrich, Abirami Prabhakaran, Sanjeev S. Sahagirdar, Paul Brett, Paolo Narvaez, Andrew D. Henroid, Dheeraj R. Subbareddy
  • Patent number: 9720730
    Abstract: In one embodiment, the present invention includes a multicore processor with first and second groups of cores. The second group can be of a different instruction set architecture (ISA) than the first group or of the same ISA set but having different power and performance support level, and is transparent to an operating system (OS). The processor further includes a migration unit that handles migration requests for a number of different scenarios and causes a context switch to dynamically migrate a process from the second core to a first core of the first group. This dynamic hardware-based context switch can be transparent to the OS. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 1, 2017
    Assignee: Intel Corporation
    Inventors: Boris Ginzburg, Ilya Osadchiy, Ronny Ronen, Eliezer Weissmann, Michael Mishaeli, Alon Naveh, David A. Koufaty, Scott D. Hahn, Tong Li, Avi Mendleson, Eugene Gorbatov, Hisham Abu-Salah, Dheeraj R. Subbareddy, Paolo Narvaez, Aamer Jaleel, Efraim Rotem, Yuval Yosef, Anil Aggarwal, Kenzo Van Craeynest
  • Patent number: 9652018
    Abstract: Methods and apparatus relating to multi-level CPU (Central Processing Unit) high current protection are described. In one embodiment, different workloads may be assigned different license types and/or weights based on micro-architectural events (such as uop (micro-operation) types and sizes) and/or data types. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Nir Rosenzweig, Doron Rajwan, Alon Naveh, Eliezer Weissmann
  • Patent number: 9639372
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 2, 2017
    Assignee: INTEL CORPORATION
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Patent number: 9619009
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at a performance level different than a performance level at which another one of the plurality of processor cores may operate. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. Other embodiments are also disclosed.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: April 11, 2017
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Oren Lamdan, Alon Naveh
  • Publication number: 20170083076
    Abstract: In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: Krishnakanth V. Sistla, Jeremy Shrall, Stephen H. Gunther, Efraim Rotem, Alon Naveh, Eliezer Weissmann, Anil Aggarwal, Martin T. Rowland, Ankush Varma, Ian M. Steiner, Matthew Bace, Avinash N. Ananthakrishnan, Jason Brandt
  • Publication number: 20170024210
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. A save instruction is executed to store a micro-architectural state and an architectural state of a processor in a common buffer of a memory upon a context switch that suspends the execution of a process. The micro-architectural state contains performance data resulting from the execution of the process. A restore instruction is executed to retrieve the micro-architectural state and the architectural state from the common buffer upon a resumed execution of the process. Power management hardware then uses the micro-architectural state as an intermediate starting point for the resumed execution.
    Type: Application
    Filed: June 7, 2016
    Publication date: January 26, 2017
    Inventors: Efraim Rotem, Eliezer Weissmann, Michael Mishaeli, Boris Ginzburg, Alon Naveh
  • Publication number: 20170017297
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem