Patents by Inventor Alon Naveh

Alon Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150052377
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 19, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20150006937
    Abstract: In one embodiment an apparatus includes a temperature sensor to perform a multiplicity of junction temperature measurements for a component in a platform, a controller comprising logic at least a portion of which is in hardware. The logic may receive from the temperature sensor the multiplicity of junction temperature measurements and may instruct the component to perform a first power down action of the component when a junction temperature measurement exceeds a first threshold, and may instruct the component to perform a second power down action of the component when an average junction temperature based on the multiplicity of junction temperature measurements exceeds a second threshold. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: EFRAIM ROTEM, ALON NAVEH, DORON RAJWAN, NADAV SHULMAN, ELIEZER WEISSMANN
  • Publication number: 20150006938
    Abstract: Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
    Type: Application
    Filed: April 16, 2014
    Publication date: January 1, 2015
    Inventors: Sanjeev Jahagirdar, Varghese George, John B. Conrad, Robert Milstrey, Stephen A. Fischer, Alon Naveh, Shai Rotem
  • Publication number: 20140325184
    Abstract: A processor saves micro-architectural contexts to increase the efficiency of code execution and power management. Power management hardware during runtime monitors execution of a code block. The code block has been compiled to have a reserved space appended to one end of the code block. The reserved space includes a metadata block associated with the code block or an identifier of the metadata block. The hardware stores a micro-architectural context of the processor in the metadata block. The micro-architectural context includes performance data resulting from a first execution of the code block. The hardware reads the metadata block upon a second execution of the code block and tunes the second execution based on the performance data.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 30, 2014
    Inventors: Efraim Rotem, Eliezer Weissamann, Boris Ginzburg, Alon Naveh, Nadav Shulman, Ronny Ronen
  • Publication number: 20140317430
    Abstract: A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Alon Naveh, Eliezer Weissmann, Ofer Nathan, Nadav Shulman
  • Publication number: 20140281634
    Abstract: Methods and apparatus relating to controlling power consumption by a Power Supply Unit (PSU) during idle state are described. In one embodiment, a power supply unit enters a lower power consumption state (e.g. S9) based on power state information, corresponding to one or more components of the platform, and comparison of a first value (corresponding to a frequency/frequentness of entry into the lower power consumption state) to a first threshold value. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: EFRAIM ROTEM, BENJAMIN J. GOULD, JAMES G. HERMERDING, II, JORGE P. RODRIGUEZ, ALON NAVEH, NIR ROSENZWEIG, VIJAY S. R. DEGALAHAL
  • Publication number: 20140281457
    Abstract: A heterogeneous processor architecture and a method of booting a heterogeneous processor is described. A processor according to one embodiment comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; and a package unit, to enable a bootstrap processor. The bootstrap processor initializes the homogeneous physical processor cores, while the heterogeneous processor presents the appearance of a homogeneous processor to a system firmware interface.
    Type: Application
    Filed: March 29, 2013
    Publication date: September 18, 2014
    Inventors: Elierzer Weissmann, Rinat Rappoport, Michael Mishaeli, Hisham Shafi, Oron Lenz, Jason W. Brandt, Stephen A. Fischer, Bret L. Toll, Inder M. Sodhi, Alon Naveh, Ganapati N. Srinivasa, Ashish V. Choubal, Scott D. Hahn, David A. Koufaty, Russel J. Fenger, Gaurav Khanna, Eugene Gorbatov, Mishali Naik, Andrew J. Herdrich, Abirami Prabhakaran, Sanjeev S. Sahagirdar, Paul Brett, Paolo Narvaez, Andrew D. Henroid, Dheeraj R. Subbareddy
  • Publication number: 20140245034
    Abstract: Methods and apparatus relating to multi-level CPU (Central Processing Unit) high current protection are described. In one embodiment, different workloads may be assigned different license types and/or weights based on micro-architectural events (such as uop (micro-operation) types and sizes) and/or data types. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 30, 2011
    Publication date: August 28, 2014
    Inventors: Efraim Rotem, Nir Rosenzweig, Doron Rajwan, Alon Naveh, Eliezer Weissmann
  • Patent number: 8819461
    Abstract: Embodiments of the invention relate to improving exit latency from computing device processor core deep power down. Processor state data may be maintained during deep power down mode by providing a secondary uninterrupted voltage supply to always on keeper circuits that reside within critical state registers of the processor. When these registers receive a control signal indicating that the processor power state is going to be reduced from an active processor power state to a zero processor power state, they write critical state data from the critical state register latches to the keeper circuits that are supplied with the uninterrupted power. Then, when a register receives a control signal indicating that a processor power state of the processor is going to be increased back to an active processor power state, the critical state data stored in the keeper circuits is written back to the critical state register latches.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Intel Corporation
    Inventors: Inder M. Sodhi, Alon Naveh, Michael Zelikson, Sanjeev s. Jahagirdar, Varghese George
  • Patent number: 8799687
    Abstract: A processor may include power management techniques to, dynamically, chose an optimal C-state for the processing core. The measurement of real workloads on the OSes exhibit two important observations (1) the bursts of high interrupt rate are interspersed between the low interrupt rate periods and long periods of high activity levels; and (2) the interrupt rate may, suddenly, fall below an interrupt rate (of 1 milli-second, for example) that is typical of the current operating systems (OS). Instead of determining the C-state based on the stale data stored in the counters, the power control logic may determine an optimal C-state by overriding the C-state determined by the OS or any other power monitoring logic. The power control logic may, dynamically, determine an optimal C-state based on the CPU idle residency times and variable rate wakeup events to match the expected wakeup event rate.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Eliezer Weissmann, Ofer Nathan, Nadav Shulman
  • Publication number: 20140189299
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189297
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Gaurav Khanna, Russell J. Fenger, Bryant E. Bigbee, Andrew D. Henroid
  • Publication number: 20140189704
    Abstract: A heterogeneous processor architecture is described.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189302
    Abstract: A processor includes multiple physical cores that support multiple logical cores of different core types, where the core types include a big core type and a small core type. A multi-threaded application includes multiple software threads are concurrently executed by a first subset of logical cores in a first time slot. Based on data gathered from monitoring the execution in the first time slot, the processor selects a second subset of logical cores for concurrent execution of the software threads in a second time slot. Each logical core in the second subset has one of the core types that matches the characteristics of one of the software threads.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Dheeraj R. Subbareddy, Ganapati N. Srinivasa, David A. Koufaty, Scott D. Hahn, Mishali Naik, Paolo Narvaez, Abirami Prabhakaran, Eugene Gorbatov, Alon Naveh, Inder M. Sodhi, Eliezer Weissmann, Paul Brett, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189301
    Abstract: A processor of an aspect includes at least one lower processing capability and lower power consumption physical compute element and at least one higher processing capability and higher power consumption physical compute element. Migration performance benefit evaluation logic is to evaluate a performance benefit of a migration of a workload from the at least one lower processing capability compute element to the at least one higher processing capability compute element, and to determine whether or not to allow the migration based on the evaluated performance benefit. Available energy and thermal budget evaluation logic is to evaluate available energy and thermal budgets and to determine to allow the migration if the migration fits within the available energy and thermal budgets. Workload migration logic is to perform the migration when allowed by both the migration performance benefit evaluation logic and the available energy and thermal budget evaluation logic.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Eugene Gorbatov, Alon Naveh, Inder M. Sodhi, Ganapati N. Srinivasa, Eliezer Weissmann, Guarav Khanna, Mishali Naik, Russell J. Fenger, Andrew D. Henroid, Dheeraj R. Subbareddy, David A. Koufaty, Paolo Narvaez
  • Publication number: 20140181830
    Abstract: According to one embodiment, a processor includes a plurality of processor cores for executing a plurality of threads, a shared storage communicatively coupled to the plurality of processor cores, a power control unit (PCU) communicatively coupled to the plurality of processors to determine, without any software (SW) intervention, if a thread being performed by a first processor core should be migrated to a second processor core, and a migration unit, in response to receiving an instruction from the PCU to migrate the thread, to store at least a portion of architectural state of the first processor core in the shared storage and to migrate the thread to the second processor core, without any SW intervention, such that the second processor core can continue executing the thread based on the architectural state from the shared storage without knowledge of the SW.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Mishali Naik, Ganapati N. Srinivasa, Alon Naveh, Inder M. Sodhi, Paolo Narvaez, Eugene Gorbatov, Eliezer Weissmann, Andrew D. Henroid, Andrew J. Herdrich, Guarav Khanna, Scott D. Hahn, Paul Brett, David A. Koufaty, Dheeraj R. Subbareddy, Abirami Prabhakaran
  • Publication number: 20140181352
    Abstract: A processor includes at least one core, a power control unit, and a first interconnect to couple with a peripheral controller. The first interconnect is to provide a first uni-directional communication path for communication of first power management data from the processor to the peripheral controller. Other embodiments are described and claimed.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Shaun M. Conrad, William Knolla, Douglas R. Moran, SM M. RAHMAN, JAWAD HAJ-YIHIA, ALON NAVEH, OHAD FALIK
  • Patent number: 8726048
    Abstract: Systems and methods of managing power provide for issuing a first operating requirement from a first processor core and issuing a second operating requirement from a second processor core. In one embodiment, the operating requirements can reflect either a power policy or a performance policy, depending upon the factor that is currently most important to software. Hardware coordination logic is used to coordinate a shared resource setting with the operating requirements. The hardware coordination logic is also able to coordinate the shared resource setting with independent resource settings of the first and second processor cores based on the operating requirements.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 13, 2014
    Assignee: Intel Corporation
    Inventors: Alon Naveh, Efraim Rotem, Eliezer Weissmann
  • Publication number: 20140129808
    Abstract: In one embodiment, the present invention includes a multicore processor having first and second cores to independently execute instructions, the first core visible to an operating system (OS) and the second core transparent to the OS and heterogeneous from the first core. A task controller, which may be included in or coupled to the multicore processor, can cause dynamic migration of a first process scheduled by the OS to the first core to the second core transparently to the OS. Other embodiments are described and claimed.
    Type: Application
    Filed: April 27, 2012
    Publication date: May 8, 2014
    Inventors: Alon Naveh, Yuval Yosef, Eliezer Weissmann, Anil Aggarwal, Efraim Rotem, Avi Mendelson, Ronny Ronen, Boris Ginzburg, Michael Mishaeli, Scott D. Hahn, David A. Koufaty, Ganapati Srinivasa, Guy Therien
  • Publication number: 20140115362
    Abstract: For one disclosed embodiment, a processor comprises a plurality of processor cores to operate at variable performance levels. One of the plurality of processor cores may operate at one time at a performance level different than a performance level at which another one of the plurality of processor cores may operate at the one time. The plurality of processor cores are in a same package. Logic of the processor is to set one or more operating parameters for one or more of the plurality of processor cores. Logic of the processor is to monitor activity of one or more of the plurality of processor cores. Logic of the processor is to constrain power of one or more of the plurality of processor cores based at least in part on the monitored activity. The logic to constrain power is to limit a frequency at which one or more of the plurality of processor cores may be set. Other embodiments are also disclosed.
    Type: Application
    Filed: December 28, 2013
    Publication date: April 24, 2014
    Inventors: Efraim ROTEM, Oren LAMDAN, Alon NAVEH